纺织学报 ›› 2022, Vol. 43 ›› Issue (09): 70-75.doi: 10.13475/j.fzxb.20210706806

• 纤维材料 • 上一篇    下一篇

高卷曲聚醚酯/聚酯并列复合纤维的制备及其性能

何崎1,2, 李军令1,2, 靳高岭3, 刘津1,2, 柯福佑1,2, 陈烨1,2(), 王华平1,2   

  1. 1.东华大学 纤维材料改性国家重点实验室, 上海 201620
    2.东华大学 材料科学与工程学院,上海 201620
    3.中国化学纤维工业协会, 北京 100020
  • 收稿日期:2021-07-23 修回日期:2022-03-08 出版日期:2022-09-15 发布日期:2022-09-26
  • 通讯作者: 陈烨
  • 作者简介:何崎(1998—),女,硕士生。主要研究方向为并列复合聚酯纤维。
  • 基金资助:
    国家重点研发计划项目(2017YFB0309200);浙江省创新团队项目(2019R01011)

Preparation and properties of tetrahydrofuran homopolyether-polybutyleneterephthalate/polyethylene terephthalate parallel composite fiber

HE Qi1,2, LI Junling1,2, JIN Gaoling3, LIU Jin1,2, KE Fuyou1,2, CHEN Ye1,2(), WANG Huaping1,2   

  1. 1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
    2. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    3. China Chemical Fibers Association, Beijing 100020, China
  • Received:2021-07-23 Revised:2022-03-08 Published:2022-09-15 Online:2022-09-26
  • Contact: CHEN Ye

摘要:

针对聚对苯二甲酸丁二醇酯/聚对苯二甲酸乙二醇酯(PBT/PET)并列复合纤维存在的卷曲弹性不足、服用舒适性差等问题,选用四氢呋喃均聚醚(PTMG)改性的PBT和常规PET作为原料,通过复合纺丝制备了PTMG-PBT/PET并列复合纤维,研究了PTMG质量分数对聚醚酯和复合纤维性能的影响,以及热处理工艺对复合纤维卷曲性能的影响。结果表明:随着PTMG质量分数的增加,聚醚酯的吸水率和吸湿率可达到4.10%和1.62%,接触角可达63.81°,复合纤维的卷曲性能也明显提高,卷曲率可达到48%;热处理可进一步提升复合纤维的卷曲性能,其中湿热处理效果比干热处理效果好,湿热处理后复合纤维的卷曲率和卷曲回复率可分别达到70%和55%;PTMG也可以提高复合纤维的常压上染率,最高可达到93.25%,比PBT/PET并列复合纤维高12%。

关键词: 四氢呋喃均聚醚, 并列复合纤维, 吸湿性, 热处理, 卷曲性能, 上染率

Abstract:

In view of insufficient crimp elasticity and poor wearing comfort of polybutylene terephthalate/polyethylene terephthalate (PBT/PET) parallel composite fibers, tetrahydrofuran homopolyether (PTMG) was selected to modify PBT and conventional PET were used as raw materials to prepare PTMG-PBT/PET parallel composite fibers by composite spinning. The effect of PTMG mass fraction on the properties of polyether ester and composite fibers, and the crimp properties of composite fibers by heat treatment process were studied. The results show that with the increase of the mass fraction of PTMG, the water absorption and moisture absorption rate of polyether ester can reach 4.10% and 1.62% respectively, the contact angle can reach 63.81°, and the crimping performance of the composite fiber is also significantly improved, reaching a crimp ratio of 48%. Heat treatment can further improve the crimp properties of composite fibers and the effect of wet heat treatment is shown to be better than that of dry heat treatment. After wet heat treatment, the crimp ratio and crimp recovery of the composite fibers reach 70% and 55%, respectively. PTMG can also improve the normal pressure dye uptake rate of composite fibers, which reaches as high as 93.25%, and is 12% higher than that of PBT/PET parallel composite fibers.

Key words: tetrahydrofuran homopolyether, parallel composite fiber, moisture absorption property, heat treatment, crimp property, dye uptake rate

中图分类号: 

  • TQ342.22

表1

原料切片基本性能参数"

样品名称 PBT质量
分数/%
PTMG质
量分数/%
特性黏度/
(dL·g-1)
结晶
温度/℃
熔点/
PET 0.68 127 258
PBT 1.10 148 230
PTMG-PBT90 90 10 1.22 129 210
PTMG-PBT80 80 20 1.34 125 203
PTMG-PBT65 65 35 1.45 122 197
PTMG-PBT45 45 55 1.57 120 193

图1

并列复合纤维的制备流程"

表2

并列复合纤维纺丝参数"

原料名称 纺丝温度/℃ 喷丝板
温度/℃
环吹风
温度/℃
纺丝速度/
(m·min-1)
一区 二区 三区 四区
PET 295 300 300 295 290 30 600
PTMG-PBT 270 275 275 270

表3

并列复合纤维规格"

纤维名称 线密度/dtex
PBT/PET 255
PTMG-PBT90/PET 232
PTMG-PBT80/PET 219
PTMG-PBT65/PET 189
PTMG-PBT45/PET 144

图2

不同PTMG质量分数PTMG-PBT的水接触角"

表4

PBT和PTMG-PBT的吸水吸湿性及体积比电阻"

试样名称 吸水率/% 吸湿率/% 体积比电阻/(Ω·cm)
PBT 1.22 0.61 5.82×1012
PTMG-PBT90 1.44 0.67 1.25×1012
PTMG-PBT80 1.96 1.17 6.34×1011
PTMG-PBT65 2.47 1.32 2.45×1011
PTMG-PBT45 4.10 1.62 1.25×1010

图3

不同PTMG质量分数的并列复合纤维的取向性能"

表5

并列复合纤维的力学性能"

纤维名称 断裂强度/(cN·dtex-1) 断裂伸长率%
PBT/PET 2.93 17.4
PTMG-PBT90/PET 2.68 51.8
PTMG-PBT80/PET 2.54 70.2
PTMG-PBT65/PET 2.19 80.7
PTMG-PBT45/PET 1.97 90.1

图4

不同PTMG质量分数的并列复合纤维的沸水收缩率"

图5

不同PTMG质量分数的并列复合纤维的卷曲率"

图6

干热处理对并列复合纤维卷曲性能的影响"

图7

不同热处理下并列复合纤维的卷曲性能"

图8

不同PTMG质量分数的并列复合纤维的上染率"

[1] 武荣瑞. 我国聚酯纤维改性的技术进展[J]. 高分子通报, 2008(8): 101-108.
WU Rongrui. Development of technology of PET fiber modification in China[J]. Chinese Polymer Bulletin, 2008(8): 101-108.
[2] FRATERNALI Fernando, CIANCIA Vincenzo, CHECHILE Rosaria, et al. Experimental study of the thermo-mechanical properties of recycled PET fiber-reinforced concrete[J]. Composite Structures, 2011, 93(9): 2368-2374.
doi: 10.1016/j.compstruct.2011.03.025
[3] 梁飞, 王锐, 张大省, 等. 异形改性涤纶织物结构设计及其吸放湿性能[J]. 纺织学报, 2006, 27(8): 71-75.
LIANG Fei, WANG Rui, ZHANG Dasheng, et al. Structure design of profile modified polyester fabric and its hygroscopicity and moisture liberation properties[J]. Journal of Textile Research, 2006, 27 (8): 71-75.
[4] LIU Wangcheng, ZHANG Jinwen, LIU Hang. Conductive bicomponent fibers containing polyaniline produced via side-by-side electrospinning[J]. Polymers, 2019, 11(6): 954-223.
doi: 10.3390/polym11060954
[5] 张大省, 王锐, 周静宜, 等. 加强差别化聚酯纤维的开发[J]. 合成纤维, 2000, 29(2): 10-13.
ZHANG Dasheng, WANG Rui, ZHOU Jingyi, et al. Strengthen the development of speciality PET fiber[J]. Synthetic Fiber in China, 2000, 29(2): 10-13.
[6] 罗锦, 王慷, 王府梅. 确定PTT/PET并列复合纤维卷曲结构的材料参数[J]. 东华大学学报(自然科学版), 2010, 36(1): 30-36.
LUO Jin, WANG Kang, WANG Fumei. The material parameters of PTT/PET parallel composite fiber crimp structure were determined[J]. Journal of Donghua Univer-sity (Natural Science), 2010, 36(1):30-36.
[7] ABBASI Marjan, KOTEK Richard. Effects of drawing process on crimp formation-ability of side-by-side bicomponent filament yarns produced from recycled, fiber-grade and bottle-grade PET[J]. The Journal of The Textile Institute, 2019, 110(10): 1439-1444.
doi: 10.1080/00405000.2019.1611523
[8] 林文静. PTT/PET并列复合短纤维的卷曲和力学性能研究[D]. 上海: 东华大学, 2010: 5-6.
LIN Wenjing. Crimp and mechanical properties of PTT/PET composite staple fibers[D]. Shanghai: Donghua University, 2010: 5-6.
[9] 李军令. 高保形PTMG-PBT/PET并列复合纤维的制备及其性能研究[D]. 上海: 东华大学, 2021: 22-23.
LI Junling. Preparation and properties of high confor-mation PTMG-PBT/PET composite fibers[D]. Shang-hai: Donghua University, 2021: 22-23.
[10] 周静宜, 张大省, 王春梅, 等. 并列复合纤维热收缩差异的形成与控制[J]. 合成纤维工业, 2015, 38(1): 7-10.
ZHOU Jingyi, ZHANG Dasheng, WANG Chunmei, et al. Formation and control of thermal shrinkage difference of parallel composite fibers[J]. China Synthetic Fiber Industry, 2015, 38(1): 7-10.
[11] 王宇, 吉鹏, 王朝生, 等. PEGT/PTT并列复合弹性纤维的制备及性能研究[J]. 合成纤维工业, 2020, 43(2): 19-25.
WANG Yu, JI Peng, WANG Chaosheng, et al. Preparation and properties of PEGT/PTT composite elastic fibers[J]. China Synthetic Fiber Industry, 2020, 43(2): 19-25.
[12] 张爱丽, 罗东, 林农, 等. 热塑性聚醚酯弹性体结晶行为的研究进展[J]. 合成纤维工业, 2010, 33(1): 35-38.
ZHANG Aili, LUO Dong, LIN Nong, et al. Research progress on crystallization behavior of thermoplastic polyether ester elastomers[J]. China Synthetic Fiber Industry, 2010, 33(1): 35-38.
[13] 严大东, 肖弘毅, 张兴华. 高分子片晶-无定形区界面自由能的理论研究[C]// 中国化学会2017全国高分子学术论文报告会摘要集. 成都: 中国化学会, 2017: 10.
YAN Dadong, XIAO Hongyi, ZHANG Xinghua. Theoretical study on the interface free energy of polymer platelets-amorphous region[C]//Chinese Chemical Cociety 2017 National Polymer Academic Papers Conference Abstracts Collection. Chengdu: Chinese Chemical Cociety, 2017: 10.
[14] 何崎, 范天翔, 李军令, 等. 热处理对PTMG-PBT/PET复合纤维性能的影响[J]. 合成纤维, 2021, 50(12): 1-4.
HE Qi, FAN Tianxiang, LI Junling, et al. Effect of heat treatment on properties of PTMG-PBT/PET composite fiber[J]. Synthetic Fiber in China, 2021, 50(12): 1-4.
[15] 齐勇进, 闵洁, 张玉梅, 等. 聚醚酯弹性纤维染色动力学和热力学研究[J]. 染料与染色, 2018, 55(6): 14-19.
QI Yongjin, MIN Jie, ZHANG Yumei, et al. Study on dyeing kinetics and thermodynamics of polyether ester elastic fiber[J]. Dyes and Dyeing, 2018, 55(6): 14-19.
[1] 高峰, 孙燕琳, 肖顺立, 陈文兴, 吕汪洋. 不同牵伸倍率下聚酯复合纤维的微观结构与性能[J]. 纺织学报, 2022, 43(08): 34-39.
[2] 王建明, 李永锋, 郝新敏, 闫金龙, 乔荣荣, 王美慧. 生物基锦纶56和锦纶66的结构与吸放湿性能评价[J]. 纺织学报, 2021, 42(08): 1-7.
[3] 李明明, 陈烨, 李夏, 王华平. 纺丝工艺对并列复合聚酯纤维性能的影响[J]. 纺织学报, 2019, 40(12): 16-20.
[4] 杨帆, 刘俊华, 边昂挺, 王燕萍, 钱琦渊, 倪建华, 夏于旻, 何勇, 王依民. 热处理对热致液晶聚芳酯纤维结构与性能的影响[J]. 纺织学报, 2019, 40(11): 9-12.
[5] 王阿明, 夏良君, 王运利. 活性红195在中性电解质溶液中的聚集行为[J]. 纺织学报, 2019, 40(04): 77-82.
[6] 万爱兰, 缪旭红, 马丕波, 陈晴, 陈方芳. 功能性纬编斜纹牛仔面料的设计及其性能[J]. 纺织学报, 2019, 40(04): 55-59.
[7] 刘冰倩, 盛丹, 龚小宝, 曹根阳, 张韬. 湿/热处理对狗绒纤维结构和性能的影响[J]. 纺织学报, 2019, 40(01): 19-25.
[8] 闫红芹 徐文正 严庆帅 郭棋盛. 预处理方法对丝瓜络纤维性能的影响[J]. 纺织学报, 2018, 39(12): 72-77.
[9] 王旭 冯向伟 李亚娟. 织物吸湿性对织物和皮肤间动摩擦力的影响[J]. 纺织学报, 2017, 38(12): 54-59.
[10] 强涛涛 王杨阳 王乐智 郑永贵 张丰杰 郑书杰. 交联剂改性超细纤维合成革基布的性能[J]. 纺织学报, 2017, 38(09): 101-108.
[11] 马娟 金剑 金欣 肖长发. 亲水抗静电共混聚酯母粒的制备及其性能[J]. 纺织学报, 2017, 38(07): 6-10.
[12] 王晓梅 陈才深. 聚乳酸/聚丙烯共混纺粘纤维的制备及其性能[J]. 纺织学报, 2017, 38(01): 13-16.
[13] 刘昀庭 张红霞 贺荣 祝成炎 王浙峰 徐青艺. 导水型再生涤纶织物的制备及其性能[J]. 纺织学报, 2016, 37(4): 96-100.
[14] 武海良 姚一军 沈艳琴 . 纺织浆料的吸湿与放湿规律[J]. 纺织学报, 2016, 37(3): 72-77.
[15] 崔玉梅 程隆棣 肖远淑. 云南野生牛角瓜纤维的吸湿与吸水性[J]. 纺织学报, 2016, 37(07): 22-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!