纺织学报 ›› 2022, Vol. 43 ›› Issue (08): 34-39.doi: 10.13475/j.fzxb.20210602006

• 纤维材料 • 上一篇    下一篇

不同牵伸倍率下聚酯复合纤维的微观结构与性能

高峰1, 孙燕琳2, 肖顺立2, 陈文兴1, 吕汪洋1()   

  1. 1.浙江理工大学 纺织纤维材料与加工技术国家地方联合工程实验室, 浙江 杭州 310018
    2.桐昆集团股份有限公司, 浙江 嘉兴 314500
  • 收稿日期:2021-06-07 修回日期:2022-02-27 出版日期:2022-08-15 发布日期:2022-08-24
  • 通讯作者: 吕汪洋
  • 作者简介:高峰(1997—),男,硕士生。主要研究方向为功能性复合纤维。

Microstructure and properties of polyester composite fibers with different drafting ratios

GAO Feng1, SUN Yanlin2, XIAO Shunli2, CHEN Wenxing1, LÜ Wangyang1()   

  1. 1. National Engineering Laboratory for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Tongkun Group Co., Ltd., Jiaxing, Zhejiang 314500, China
  • Received:2021-06-07 Revised:2022-02-27 Published:2022-08-15 Online:2022-08-24
  • Contact: LÜ Wangyang

摘要:

为研究聚对苯二甲酸乙二醇酯/聚对苯二甲酸丙二醇酯(PET/PTT)并列型复合纤维制备工艺与其结构及性能之间的关系,借助二维广角X射线衍射仪、差示扫描量热仪等对未牵伸以及2.353.35倍牵伸纤维的结晶取向性能、热性能、力学性能以及卷曲性能进行测试与分析。结果表明:随着牵伸倍率的增加,PET/PTT复合纤维内部单组分结晶度变化有所差异,PET组分结晶度由43.04%增至45.73%,但PTT组分的结晶度几乎不变,其取向度由82.3%增大至89.2%,然后保持稳定,说明牵伸诱导取向达到饱和;同时,取向度的增大也导致PET/PTT 复合纤维的弹性模量由16.8 cN/dtex增加到23.1 cN/dtex,断裂强度由2.9 cN/dtex增加到3.5 cN/dtex, 但断裂伸长率由52.6%下降到38.6%;牵伸倍率的增加导致双组分纤维结构差异明显,使复合纤维的卷曲性能更加优异。

关键词: 复合纤维, 弹性纤维, 聚对苯二甲酸乙二醇酯, 聚对苯二甲酸丙二醇酯, 力学性能, 卷曲性能

Abstract:

In order to study the relationship between process, structure and properties of PET/PTT parallel composite fibers, the crystalline orientation properties, thermal properties, mechanical properties and crimp properties, unstretched and 2.35–3.35 times stretched elastic fibers were tested and analyzed with the two-dimensional wide angle X-ray diffractometer and differential scanning calorimeter.The crystallinity of the PET/PTT composite fiber increased from 43.04% to 45.73%, but the crystallinity of the PTT fiber remained stable, its orientation increased from 82.3% to 89.2%, indicating that the draft induction orientation reached saturation. The increase in orientation also led to the increase of the elastic modulus of PET/PTT fiber from 16.8 cN/dtex to 23.1 cN/dtex and the tensile strength from 2.9 cN/dtex to 3.5 cN/dtex, but the elongation at break decreased from 52.6% to 38.6%; the increase of the draft multiplicity led to the obvious difference of the bicomponent fiber structure. The increase in draft multiplicity led to a significant difference in the structure of the bicomponent fibers, resulting in more excellent curl properties of the composite fiber.

Key words: composite fiber, elastic fiber, poly(ethylene terephthalate), poly(trimethylene terephthalate), mechanical property, crimp property

中图分类号: 

  • TS15

图1

纺丝工艺路线"

表1

试样的规格"

试样编号 速度/(m·min–1) 牵伸倍
率/倍
热辊1 热辊2
Y–0
Y–1 1 450 3 400 2.35
Y–2 1 450 3 770 2.60
Y–3 1 450 4 130 2.85
Y–4 1 450 4 570 3.15
Y–5 1 450 4 860 3.35

图2

复合纤维的DSC曲线"

表2

复合纤维中各组分的结晶度"

试样编号 结晶度
PET组分 PTT组分
Y–0 59.57 57.16
Y–1 43.04 40.76
Y–2 44.52 40.63
Y–3 45.23 39.81
Y–4 45.73 40.20
Y–5 44.37 40.39

图3

复合纤维的二维广角X射线衍射图"

图4

复合纤维的一维广角X射线衍射强度分布图"

表3

复合纤维的晶区、非晶区取向因子及声速"

试样编号 取向因子 声速/
(km·s–1)
晶区 非晶区
Y–0 0.759
Y–1 0.823 0.862 1.96
Y–2 0.864 0.879 2.27
Y–3 0.880 0.831 2.41
Y–4 0.892 0.836 2.16
Y–5 0.889 0.839 1.21

表4

复合纤维的力学性能"

试样编号 弹性模量/
(cN·dtex–1)
断裂强度/
(cN·dtex–1)
断裂伸
长率/%
Y–1 16.8 2.9 52.6
Y–2 18.4 3.1 51.5
Y–3 20.2 3.2 49.8
Y–4 20.9 3.4 43.8
Y–5 23.1 3.5 38.6

图5

不同牵伸倍率下的卷曲性能"

[1] MARAW Souissi, RAMZI Khiari, WAFA Haddar, et al. Dyeing of innovative bicomponent filament fabrics (PET/PTT) by disperse dyestuffs: characterization and optimization process[J]. Processes, 2020. DOI: org/10.3390/pr8050501.
doi: org/10.3390/pr8050501
[2] CHAE Dong Wook, CHOI Kyung Rak, KIM Byoung Chul. Structural characterization and physical properties of poly(ethylene terephthalate) and poly(trimethylene terephthalate) blends: effects of blending time and blend ratio[J]. Textile Science and Engineering, 2017, 54(3):191-198.
[3] XIAO Hong, SHI Meiwu, LIU Lili, et al. The crystallinity and orientation structure and crimp properties of PET/PTT bicomponent filament[J]. Polymer Bulletin, 2013, 627(1):110-116.
[4] GUO Jing, ZHENG Nan, CHEN Yingtao. Study on influence of crimping performance of PET/PTT self-crimp yarn treated with moist heat[J]. Advanced Materials Research, 2011, 287:2547-2551.
[5] CHEN Sihai, WANG Shanyuan. Effect of thermal stimuli on physical behaviors of PET/PTT bicomponent filament[J]. Advanced Materials Research, 2010, 129:280-284.
[6] 汪一栋, 卢新宇, 王春燕, 等. PTT/PET自卷曲复合纤维的工艺性能[J]. 合成纤维, 2020, 49(4):8-10.
WANG Yidong, LU Xinyu, WANG Chunyan, et al. Study on the process performance of self-crimping PTT/PET composite fiber[J]. Synthetic Fiber in China, 2020, 49(4):8-10.
[7] HUA Tao, WONG NGO S, TANG WAI M. Study on properties of elastic core-spun yarns containing a mix of spandex and PET/PTT bi-component filament as core[J]. Textile Research Journal, 2018, 88(9):1065-1076.
doi: 10.1177/0040517517693982
[8] XIE Fang, LIANG Hao, REN Xiaojun, et al. Isothermal crystallization of PET/PTT-CNTs composites[J]. Advanced Materials Research, 2013, 750:191-194.
[9] JIA Panjin, WANG Yafei, LI Huibo, et al. Phase morphology, mechanical and thermal properties of poly(trimethylene terephthalate) and poly (ethylene terephthalate) blends[J]. Applied Mechanics and Materials, 2016, 4254:277-283.
[10] CHEN Zhenming, LIU Yan, YAO Chenguang, et al. The influences of polyethylene glycol molecular weight on thermal stability, nonisothermal crystallization behavior, and morphology of poly(trimethylene terephthalate)/poly(ethylene oxide terephthalate) copolymers[J]. Polymer Testing, 2012, 31(5):685-696.
doi: 10.1016/j.polymertesting.2012.03.008
[11] AI Xueming, LI Shihong, JIA Panjin, et al. Melting and crystallization properties of crystalline/crystalline blends of poly(trimethylene terephthalate) and poly(ethylene terephthalate)[J]. Applied Mechanics & Materials, 2014, 665:331-334.
[12] SHYR Tienwei, TUNG Chiahsin, CHENG Wensheng, et al. The crystallization rate and morphological structure of poly(ethylene/trimethylene terephthlate) copolyesters under isothermal melt-crystallization and cold-crystallization[J]. Journal of Polymer Research, 2013, 20(7):1-10.
[13] SUGENO Kousuke, KOKUBUN Satoshi, SAITO Hiromu. UCST type phase boundary and accelerated crystallization in PTT/PET blends[J]. Polymers,2020. DOI: org/10.3390/polym12112730.
doi: org/10.3390/polym12112730
[14] 高庆文, 邓倩倩, 曹宇恒, 等. 高低黏PET并列复合纤维的制备与性能[J]. 合成纤维, 2018, 47(12):9-13.
GAO Qingwen, DENG Qianqian, CAO Yuheng, et al. Preparation and properties of high and low viscosity PET side-by-side bicomponent fiber[J]. Synthetic Fiber in China, 2018, 47(12):9-13.
[15] CANETTI Maurizio, CASTELANO Maila. Structural investigation of poly(ethylene terephthalate)/poly(trimethylene terephthalate) transesterificated blends[J]. Journal of Polymer Research, 2012, 19(5):1-7.
doi: 10.1007/s10965-012-0001-8
[16] 葛陈程, 吕汪洋, 石教学, 等. 应用二维X射线衍射法测定涤纶工业丝结晶和取向行为[J]. 纺织学报, 2018, 39(3):19-25.
GE Chencheng, LÜ Wangyang, SHI Jiaoxue, et al. Measurement of crystallinity and crystal orientation of polyester industrial yarns by 2-D X-ray diffraction[J]. Journal of Textile Research, 2018, 39(3):19-25.
[17] ARASTEH Rouhollah, NADERI Ali, KAPTAN Navid, et al. Effects offiber spinning on the morphology, rheology, thermal, and mechanical properties of poly(trimethylene terephthalate)/poly(ethylene terephthalate) blends[J]. Advances in Polymer Technology, 2014, 33(S1):21443.
[18] CHEN Sihai, WANG Shanyun. Tensile and fracture behaviors of PET/PTT side-side bicomponent filament[J]. International Journal of Polymer Analysis & Characterization, 2010, 15(3):147-154.
[19] 张须臻, 杨一格, 刘少波, 等. PET/PTT并列复合纤维制备工艺对其结构与性能的影响[J]. 合成纤维, 2020, 49(3):1-6.
ZHANG Xuzhen, YANG Yige, LIU Shaobo, et al. Effect of preparation technology on structure and properties of PET/PTT composite fiber[J]. Synthetic Fiber in China, 2020, 49(3):1-6.
[20] STOJANOVIC Petar, SAVIC Marija, TRAJKOVIC Dusan, et al. The effect of false-twist texturing parameters on the structure and crimp properties of polyester yarn[J]. Chemical Industry and Chemical Engineering Quarterly, 2016, 23:411-419.
doi: 10.2298/CICEQ160720055S
[1] 孙颖, 李端鑫, 于洋, 陈嘉琳, 范皖月. 大麻纤维的芬顿法脱胶及其性能[J]. 纺织学报, 2022, 43(08): 95-100.
[2] 黄耀丽, 陆诚, 蒋金华, 陈南梁, 邵慧奇. 聚酰亚胺纤维增强聚二甲基硅氧烷柔性复合膜的热力学性能[J]. 纺织学报, 2022, 43(06): 22-28.
[3] 渠赟, 马维, 刘颖, 任学宏. 可光降解聚羟基丁酸酯/聚己内酯基抗菌纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(06): 29-36.
[4] 孙焕惟, 张恒, 崔景强, 朱斐超, 王国锋, 苏天阳, 甄琪. 聚乳酸非织造材料的后牵伸辅助熔喷成形工艺及其力学性能[J]. 纺织学报, 2022, 43(06): 86-93.
[5] 赵波波, 王亮, 李敬毓, 万刚, 夏兆鹏, 刘雍. 六次甲基四胺交联酚醛纤维的制备及其性能[J]. 纺织学报, 2022, 43(05): 57-62.
[6] 邵灵达, 黄锦波, 金肖克, 田伟, 祝成炎. 硅烷偶联剂改性处理对玻璃纤维织物增强聚苯硫醚复合材料性能的影响[J]. 纺织学报, 2022, 43(04): 68-73.
[7] 方镁淇, 王茜, 李彦, 李超婧, 黎昊, 王璐. 女性压力性尿失禁吊带的设计及其体外力学性能评价[J]. 纺织学报, 2022, 43(03): 38-43.
[8] 徐晓彤, 江振林, 郑钦超, 朱科宇, 王朝生, 柯福佑. 导热结构对聚对苯二甲酸乙二醇酯非等温结晶行为的影响[J]. 纺织学报, 2022, 43(03): 44-49.
[9] 谷元慧, 周红涛, 张典堂, 刘景艳, 王曙东. 碳纤维增强编织复合材料圆管的扭转力学性能及其损伤机制[J]. 纺织学报, 2022, 43(03): 95-102.
[10] 王锐, 刘彦麟, 刘蕴钰, 顾伟文, 刘紫灵, 魏建斐. 以聚对苯二甲酸乙二醇酯为前驱体的碳点制备及其应用[J]. 纺织学报, 2022, 43(02): 10-18.
[11] 陈咏, 乌婧, 王朝生, 潘小虎, 李乃祥, 戴钧明, 王华平. 生物可降解聚己二酸-对苯二甲酸丁二醇酯纤维的制备及其环境降解性能[J]. 纺织学报, 2022, 43(02): 37-43.
[12] 郭子娇, 李悦, 张瑞, 陆赞. 聚苯胺/Ti3C2Tx/碳纳米管复合纤维电极的制备及其性能[J]. 纺织学报, 2022, 43(02): 74-80.
[13] 闵小豹, 潘志娟. 生物质纤维/菠萝叶纤维多组分混纺纱线的品质与性能[J]. 纺织学报, 2022, 43(01): 74-79.
[14] 王松立, 王美林, 周湘, 刘遵峰. 人造蜘蛛丝与仿蜘蛛丝纤维的研究进展[J]. 纺织学报, 2021, 42(12): 174-179.
[15] 宋雪旸, 张岩, 徐成功, 王萍, 阮芳涛. 碳纤维/聚丙烯/聚乳酸增强复合材料的力学性能[J]. 纺织学报, 2021, 42(11): 84-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!