纺织学报 ›› 2022, Vol. 43 ›› Issue (02): 74-80.doi: 10.13475/j.fzxb.20211102607

• 纤维材料 • 上一篇    下一篇

聚苯胺/Ti3C2Tx/碳纳米管复合纤维电极的制备及其性能

郭子娇, 李悦, 张瑞, 陆赞()   

  1. 上海工程技术大学 纺织服装学院, 上海 201620
  • 收稿日期:2021-11-03 修回日期:2021-12-06 出版日期:2022-02-15 发布日期:2022-03-15
  • 通讯作者: 陆赞
  • 作者简介:郭子娇(1993—),女,硕士生。主要研究方向为纤维超级电容器。
  • 基金资助:
    国家自然科学基金项目(52003152);上海市科技人才计划项目(19YF1417700)

Preparation and properties of polyaniline/Ti3C2Tx/carbon nanotube composite fiber-based electrodes

GUO Zijiao, LI Yue, ZHANG Rui, LU Zan()   

  1. School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
  • Received:2021-11-03 Revised:2021-12-06 Published:2022-02-15 Online:2022-03-15
  • Contact: LU Zan

摘要:

为制备电化学性能优异的一维纤维超级电容器,利用碳纳米管(CNT)的液晶态性质和MXene(Ti3C2Tx)材料的电化学性能协同制备复合纤维作为电极基体,运用简单可控的电化学沉积方法在纤维表面沉积聚苯胺(PANI)制备复合纤维电极。对纤维进行微观形貌表征和电化学性能测试,获得最佳沉积时间的电极并组装纤维超级电容器。研究表明:当沉积5 min时,在5 mV/s的扫描速度下PANI/Ti3C2Tx/CNT纤维电极表现出最大的体积比电容,为113.92 F/cm3;在0.1 A/cm3的电流密度下证明其组装的超级电容器比电容可达65.4 F/cm3,同时在0.8 A/cm3电流密度下循环5 000次后,比电容保持率为79%,具有良好的稳定性。

关键词: 纤维电极, 电化学沉积, 纤维超级电容器, 聚苯胺, 碳纳米管, 复合纤维

Abstract:

In order to prepare portable, one-dimensional fiber supercapacitors with required electrochemical properties, composite fibers were prepared as electrode substrates using the liquid crystal state of carbon nanotubes (CNT) and MXene (Ti3C2Tx) synergistically. A simple and controllable electrochemical deposition method was applied to deposit polyaniline (PANI) on the fiber surface to prepare composite fiber electrodes. Microscopic morphological characterization and electrochemical performance tests were performed on the fibers to obtain the electrode with the optimal deposition time and assemble the fiber supercapacitor. The result shows that the PANI/Ti3C2Tx/CNT fiber electrode exhibits the highest bulk specific capacitance of 113.92 F/cm3 at a scan rate of 5 mV/s when deposited for 5 min. The specific capacitance of the assembled supercapacitor reached 65.4 F/cm3 at a current density of 0.1 A/cm3. The retention rate of the specific capacitance is 79% after 5 000 cycles at 0.8 A/cm3, indicating good stability.

Key words: fiber electrode, electrochemical deposition, fiber supercapacitor, polyaniline, carbon nanotube, composite fiber

中图分类号: 

  • TM533

图1

刻蚀后的MAX相和MXene片层SEM照片"

图2

MXene纤维的高分辨率TEM照片"

图3

MAX(Ti3AlC2)和MXene(Ti3C2Tx)的XRD图"

图4

Ti3C2Tx/CNT复合纤维的横截面SEM照片"

图5

Ti3C2Tx/CNT复合纤维的表面SEM照片"

图6

不同扫描速度下Ti3C2Tx/CNT复合纤维的CV图"

图7

不同沉积时间复合纤维表面形貌电镜照片"

图8

不同沉积时间纤维的电化学性能"

图9

复合纤维超级电容器的电化学性能"

[1] 朱浩, 赵丽. 二氧化锰/碳复合电极研究进展[J]. 轻工科技, 2021, 37(1): 41-42.
ZHU Hao, ZHAO Li. Research progress of manganese dioxide/carbon composite electrode[J]. Light Industry Science and Technology, 2021, 37(1): 41-42.
[2] 张鑫, 陈星, 白天, 等. 柔性纤维状超级电容器的研究进展[J]. 物理学报, 2020, 69(17): 86-106.
ZHANG Xin, CHEN Xing, BAI Tian, et al. Research progress of flexible fibrous supercapacitors[J]. Journal of Physics, 2020, 69(17): 86-106.
[3] FUTABA D N, HATA K, HIRAOKA T, et al. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes[J]. Nature Materials, 2006, 5(12): 987-994.
doi: 10.1038/nmat1782
[4] NAGUIB M, MOCHALIN V, BARSOUM M W, et al. 25th anniversary article: MXenes: a new family of two-dimensional materials[J]. Advanced Materials, 2014, 26(7): 992-1005.
doi: 10.1002/adma.201304138
[5] HU M, LI Z, HU T, et al. Self-assembled Ti3C2Tx MXene film with high gravimetric capacitance[J]. Chemical Communications, 2015, 51(70): 13531-13533.
doi: 10.1039/C5CC04722F
[6] YU C, GONG Y, CHEN R, et al. A solid-state fibriform supercapacitor boosted by host-guest hybridization between the carbon nanotube scaffold and MXene nanosheets[J]. Small, 2018, l4(29): 1801203.
[7] 王芳平, 罗英涛, 汪艳芳, 等. CV法制备同轴PANI/CFC复合材料及其电化学性能研究[J]. 炭素技术, 2020, 39(6): 56-58,74.
WANG Fangping, LUO Yingtao, WANG Yanfang, et al. Preparation of coaxial PANI/CFC composites by CV method and its electrochemical properties[J]. Carbon Technigues, 2020, 39(6): 56-58,74.
[8] LI P P, JIN Y Z, PENG L L, et al. Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels[J]. Advanced Functional Materials, 2018, 30(18): 1800124.
[9] HUANG F, CHEN D. Towards the upper bound of electrochemical performance of ACNT@polyaniline arrays as supercapacitors[J]. Energy & Environmental Science, 2012, 5(2): 5833-5841.
[10] WANG Y, WANG X, LI X, et al. Engineering 3D ion transport channels for flexible mxene films with superior capacitive performance[J]. Advanced Functional Materials, 2019, 29(14): 1900326.
doi: 10.1002/adfm.v29.14
[11] TANG Y, ZHU J, YANG C, et al. Enhanced supercapacitive performance of manganese oxides doped two-dimensional titanium carbide nanocomposite in alkaline electrolyte[J]. Journal of Alloys and Compounds, 2016, 685:194-201.
doi: 10.1016/j.jallcom.2016.05.221
[1] 曹元鸣, 郑蜜, 李一飞, 翟旺宜, 李丽艳, 常朱宁子, 郑敏. 二硫化钼/聚氨酯复合纤维膜的制备及其光热转换性能[J]. 纺织学报, 2021, 42(09): 46-51.
[2] 万振凯, 贾敏瑞, 包玮琛. 三维编织复合材料中碳纳米管纱线嵌入位置和数量的优化配置[J]. 纺织学报, 2021, 42(09): 76-82.
[3] 刘锁, 武丁胜, 李曼, 赵玲玲, 凤权. 水刺粘胶/聚苯胺复合纤维膜的制备及其吸附性能[J]. 纺织学报, 2021, 42(08): 122-127.
[4] 张亚茹, 胡毅, 程钟灵, 许仕林. 聚丙烯腈基Si/C/碳纳米管复合碳纳米纤维膜的制备及其储能性能[J]. 纺织学报, 2021, 42(08): 49-56.
[5] 徐凯, 田星, 曹英, 何雅琦, 夏延致, 全凤玉. 阻燃涤纶/海藻酸钙纤维复合材料的制备及其性能[J]. 纺织学报, 2021, 42(07): 19-24.
[6] 代阳, 杨楠楠, 肖渊. 静电纺碳纳米管电阻式柔性湿度传感器的制备及其性能[J]. 纺织学报, 2021, 42(06): 51-56.
[7] 汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2021, 42(05): 168-177.
[8] 王璐, 韩雪, 娄琳, 何令华, 周小红. 电热防护手套研制及其在极端寒冷环境下的工效实验[J]. 纺织学报, 2021, 42(05): 150-154.
[9] 周歆如, 周筱雅, 马咏健, 胡铖烨, 赵晓曼, 洪剑寒, 韩潇. 导电聚苯胺/聚氨酯泡沫的制备及其压力传感性能[J]. 纺织学报, 2021, 42(04): 62-68.
[10] 张润可, 吕汪洋, 陈文兴. 钴酞菁与碳纳米管共修饰碳纤维织物传感器的制备及其电化学性能[J]. 纺织学报, 2021, 42(04): 121-126.
[11] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49.
[12] 姜兆辉, 李永贵, 杨自涛, 郭增革, 张战旗, 齐元章, 金剑. 聚合物基石墨烯复合纤维及其纺织品研究进展[J]. 纺织学报, 2021, 42(03): 175-180.
[13] 夏云, 吕汪洋, 陈文兴. 模拟太阳光下金属酞菁/多壁碳纳米管催化降解染料[J]. 纺织学报, 2020, 41(12): 94-101.
[14] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[15] 刘艳春, 白刚. 小檗碱在聚丙烯腈/醋酸纤维素复合纤维染色中的应用[J]. 纺织学报, 2020, 41(05): 94-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 林彬;李哲. 泡泡袖袖山褶皱凸起量的影响因素[J]. 纺织学报, 2009, 30(06): 104 -106 .
[2] 贾庆龙, 焦晓宁, 王忠忠. PVDF静电纺锂电隔膜纤维直径预测模型及优化[J]. 纺织学报, 2012, 33(3): 22 -26 .
[3] 陈仁忠 胡毅 袁菁红 沈桢 陈艳丽 吕慧 何霞. 静电纺MnO2/PAN纳米纤维膜的制备及其催化氧化甲醛性能[J]. 纺织学报, 2015, 36(05): 1 -6 .
[4] 景晓宁 李晓久. 朴素贝叶斯算法在女童体型判别中的应用[J]. 纺织学报, 2017, 38(12): 124 -128 .
[5] 陈悦, 赵永欢, 褚朱丹, 庄志山, 邱琳琳, 杜平凡. 基于碳纤维及其织物的柔性锂电池电极研究进展[J]. 纺织学报, 2019, 40(02): 173 -180 .
[6] 姬长春, 张开源, 王玉栋, 王新厚. 熔喷三维气流场的数值计算与分析[J]. 纺织学报, 2019, 40(08): 175 -180 .
[7] 孙光武, 李杰聪, 辛三法, 王新厚. 基于非牛顿流体本构方程的熔喷纤维直径预测[J]. 纺织学报, 2019, 40(11): 20 -25 .
[8] 王访鹤, 王锐, 魏丽菲, 王照颖, 张安莹, 王德义. 层层自组装阻燃改性聚酯织物的制备及其性能[J]. 纺织学报, 2019, 40(11): 106 -112 .
[9] 甄琪, 张恒, 朱斐超, 史建宏, 刘雍, 张一风. 聚丙烯/聚酯双组分微纳米纤维熔喷非织造材料制备及其性能[J]. 纺织学报, 2020, 41(02): 26 -32 .
[10] 李辉芹, 张楠, 温晓丹, 巩继贤, 赵晓明, 王支帅. 纤维材料降噪结构体的研究进展[J]. 纺织学报, 2020, 41(03): 175 -181 .