纺织学报 ›› 2021, Vol. 42 ›› Issue (07): 19-24.doi: 10.13475/j.fzxb.20200902906

• 特约专栏:纺织材料阻燃新技术 • 上一篇    下一篇

阻燃涤纶/海藻酸钙纤维复合材料的制备及其性能

徐凯1,2, 田星1, 曹英2, 何雅琦2, 夏延致1, 全凤玉1,2()   

  1. 1.青岛大学 生物多糖纤维成形与生态纺织国家重点实验室, 山东 青岛 266071
    2.青岛大学 材料科学与工程学院, 山东 青岛 266071
  • 收稿日期:2020-09-14 修回日期:2021-03-01 出版日期:2021-07-15 发布日期:2021-07-22
  • 通讯作者: 全凤玉
  • 作者简介:徐凯 (1996—),男,硕士生。主要研究方向为海洋高分子材料。
  • 基金资助:
    国家重点研发计划项目(2017YFB0309000)

Preparation and property of flame retardant polyester/calcium alginate fiber composites

XU Kai1,2, TIAN Xing1, CAO Ying2, HE Yaqi2, XIA Yanzhi1, QUAN Fengyu1,2()   

  1. 1. State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, Shandong 266071, China
    2. College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China
  • Received:2020-09-14 Revised:2021-03-01 Published:2021-07-15 Online:2021-07-22
  • Contact: QUAN Fengyu

摘要:

针对海藻酸钙纤维阴燃的现象,通过标准纤维解离器将阻燃涤纶与海藻酸钙纤维共混制备了阻燃复合材料,对复合材料的阻燃性能、热稳定性以及锥形量热测试后的残渣微观形貌进行表征。结果表明:当阻燃涤纶与海藻酸钙纤维以质量比为40∶60混合时,复合材料的阴燃时间小于1 s,损毁长度为12 mm;在燃烧过程中,阻燃涤纶受热熔融覆盖在海藻酸钙纤维表面,隔绝了海藻酸钙纤维与空气的接触,从而抑制海藻酸钙纤维的阴燃;与阻燃涤纶相比,复合材料具有较低的热释放量和烟释放量;在复合材料质量损失的第3个阶段(350~600 ℃),海藻酸钙纤维热分解的中间产物避免了阻燃涤纶的快速分解,提高了复合材料的稳定性,促进了残炭的形成。

关键词: 复合纤维, 功能性纤维, 海藻酸钙纤维, 阻燃涤纶, 阴燃, 熔滴, 阻燃机制

Abstract:

Facing the smoldering phenomenon of calcium alginate, the flame retardant composite was prepared by blending flame retardant polyester (FR-PET) and calcium alginate fiber (Ca-Alg) with a standard fiber dissociator. The flame-retardancy, thermal stability and morphology of the residue after conic calorimetry were characterized. The results show that when the mass ratio of FR-PET to Ca-Alg is 40∶60, the smoldering time of the composite is less than 1 s and the damage length is 12 mm. In the process of combustion, the melted FR-PET covers the surface of Ca-Alg fiber, which not only avoids the melting drop of FR-PET but also isolates the contact between Ca-Alg and air, thus inhibiting the smoldering of Ca-Alg. Furthermore, the composite has lower total heat release and total smoke production compared with FR-PET. In the third stage of mass loss of composites (350-600 ℃), the results of thermogravimetric analysis show that the intermediate products of thermal decomposition of Ca-Alg avoid the rapid decomposition of FR-PET, improves the stability of the composites and promotes the formation of residual carbon.

Key words: composite fiber, functional fiber, calcium alginate fiber, flame retardant polyester, smoldering, melting drop, flame retardant mechanism

中图分类号: 

  • TQ341.9

表1

阻燃涤纶/海藻酸钙纤维复合材料的极限氧指数及垂直燃烧测试结果"

样品编号 LOI值/% 续燃时间/s 阴燃时间/s 损毁长度/mm
1# 24.5 0 完全损毁
2# 24.7 0 1 388 56
3# 25.1 0 240 8
4# 28.3 0 <1 12
5# 26.4 0 30 24
6# 30.8 3 0 39

表2

阻燃涤纶/海藻酸钙纤维复合材料的锥形量热数据"

样品
编号
引燃
时间/s
热释放速率峰
值/(kW·m-2)
总热释放量/
(MJ·m-2)
烟释放速率峰
值/(m2·s-1)
总烟释放量/
(m2·m-2)
1# 58 136 7.12 0.007 0 0.05
4# 49 257 11.29 0.075 2 1.77
6# 68 316 12.66 0.203 1 5.62

图1

阻燃涤纶/海藻酸钙纤维复合材料的锥形量热曲线"

图2

阻燃涤纶/海藻酸钙纤维复合材料的TG和DTG曲线"

图3

阻燃涤纶/海藻酸钙纤维复合材料锥形量热测试后残渣的扫描电镜照片"

[1] LIU Yun, ZHANG Chuanjie, ZHAO Jinchao, et al. Bio-based barium alginate film: preparation, flame retardancy and thermal degradation behavior[J]. Carbohydr Polym, 2016, 139:106-114.
doi: 10.1016/j.carbpol.2015.12.044
[2] ZHANG Jianjun, JI Quan, WANG Fengjun, et al. Effects of divalent metal ions on the flame retardancy and pyrolysis products of alginate fibres[J]. Polymer Degradation and Stability, 2012, 97(6):1034-1040.
doi: 10.1016/j.polymdegradstab.2012.03.004
[3] ZAMMARANO Mauro, MATKO Szabolcs, PITTS William, et al. Towards a reference polyurethane foam and bench scale test for assessing smoldering in upholstered furniture[J]. Polymer Degradation and Stability, 2014, 106:97-107.
doi: 10.1016/j.polymdegradstab.2013.12.010
[4] ZHANG Xiansheng, XIA Yanzhi, SHI Meiwu, et al. The flame retardancy of alginate/flame retardant viscose fibers investigated by vertical burning test and cone calorimeter[J]. Chinese Chemical Letters, 2018, 29(3):489-492.
doi: 10.1016/j.cclet.2017.07.023
[5] ZHAO Haibo, WANG Yuzhong. Design and synjournal of PET-based copolyesters with flame-retardant and antidripping performance[J]. Macromolecular Rapid Communications, 2017, 38(23):1700451.
doi: 10.1002/marc.v38.23
[6] WANG Yuzhong, CHEN Xiaoting, TANG Xudong, et al. A new approach for the simultaneous improvement of fire retardancy, tensile strength and melt dripping of poly(ethylene terephthalate)[J]. Journal of Materials Chemistry, 2003, 13(6):1248-1249.
doi: 10.1039/b302744a
[7] JING Xinke, GE Xinguo, XIANG Xing, et al. A novel phosphorus-containing copolyester with low melting temperature and high flame retardancy[J]. Polymer International, 2009, 58(10):1202-1208.
doi: 10.1002/pi.2655
[8] LEVCHIK S V, WEIL E D. A review on thermal decomposition and combustion of thermoplastic polyesters[J]. Polymers for Advanced Technologies, 2004, 15(12):691-700.
doi: 10.1002/(ISSN)1099-1581
[9] CHANG Shinnjen, CHANG Fengchin. Synjournal and characterization of copolyesters containing the phosphorus linking pendent groups[J]. Journal of Applied Polymer Science, 1999, 72:109-122.
doi: 10.1002/(ISSN)1097-4628
[10] SAKON Ichiro, SEKIGUCHI Masao, KANAYAMA Atsushi. Method for producing red phsophorus flame retardant and nonflammable resinous composition: US, 5041490[P]. 1991-08-20.
[11] SAKON Ichiro, SEKIGUCHI Masao, KANAYAMA Atsushi. Red phosphorus flame retardant and nonflammable resinous composition containing the same: US, 4879067[P]. 1989-11-07.
[12] BANKS Mavis, EBDON John, JOHNSON Michael. Influence of covalently bound phosphorus-containing groups on the flammability of poly(vinyl alcohol), poly(ethylene-co-vinyl alcohol) and low-density polyethylene[J]. Polymer, 1993, 34(21):4547-4556.
doi: 10.1016/0032-3861(93)90163-5
[13] BANKS Mavis, EBDON John, JOHNSON Michael. The flame-retardant effect of diethyl vinyl phosphonate in copolymers with styrene, methyl methacrylate, acrylonitrile and acrylamide[J]. Polymer, 1994, 35(16):3470-3473.
doi: 10.1016/0032-3861(94)90910-5
[14] MIKROYANNIDIS John A, KOURTIDES Demetrius A. Curing of epoxy resins with 1-[di(2-chloroethoxyphosphinyl)methyl]-2,4-and-2,6-diaminobenzene[J]. Journal of Applied Polymer Science, 1984, 29:197-209.
doi: 10.1002/app.1984.070290118
[15] WANG Bin, XU Yingjun, LI Ping, et al. Flame-retardant polyester/cotton blend with phosphorus/nitrogen/silicon containing nano-coating by layer-by-layer assembly[J]. Appl Surf Sci, 2020, 509:1-7.
[16] ZHANG Xiansheng, XIA Yanzhi, SHI Meiwu, et al. The flame retardancy of alginate/flame retardant viscose fibers investigated by vertical burning test and cone calorimeter[J]. Chin Chem Lett, 2018, 29(3):489-492.
doi: 10.1016/j.cclet.2017.07.023
[17] WANG Bin, LI Ping, XU Yingjun, et al. Bio-based, nontoxic and flame-retardant cotton/alginate blended fibres as filling materials: thermal degradation properties, flammability and flame-retardant mechanism[J]. Compos Pt B:Engineering, 2020, 194:1-11.
[18] ZHANG Xiansheng, SHI Meiwu. Flame retardant vinylon/poly(m-phenylene isophthalamide) blended fibers with synergistic flame retardancy for advanced fireproof textiles[J]. J Hazard Mater, 2019, 365:9-15.
doi: S0304-3894(18)31009-4 pmid: 30399488
[19] ZHANG Fengqi, WANG Bin, XU Yingjun, et al. Convenient blending of alginate fibers with polyamide fibers for flame-retardant non-woven fabrics[J]. Cellulose, 2020, 27(14):8341-8349.
doi: 10.1007/s10570-020-03331-2
[20] ALONGI Jenny, CIOBANU Mihaela, MALUCELLI Giulio. Cotton fabrics treated with hybrid organic-inorganic coatings obtained through dual-cure processes[J]. Cellulose, 2011, 18(5):1335-1348.
doi: 10.1007/s10570-011-9564-5
[21] ZHANG Jianjun, JI Quan, SHEN Xiuhong, et al. Pyrolysis products and thermal degradation mechanism of intrinsically flame-retardant calcium alginate fibre[J]. Polymer Degradation and Stability, 2011, 96(5):936-942.
doi: 10.1016/j.polymdegradstab.2011.01.029
[22] TIAN Guangxiu, JI Quan, XU Dongmei, et al. The effect of zinc ion content on flame retardance and thermal degradation of alginate fibers[J]. Fibers and Polymers, 2013, 14(5):767-771.
doi: 10.1007/s12221-013-0767-2
[1] 刘可, 陈爽, 肖茹. 磷杂菲基共聚协效阻燃聚酰胺6纤维的制备及其性能[J]. 纺织学报, 2021, 42(07): 11-18.
[2] 顾伟文, 王文庆, 魏丽菲, 孙晨颖, 郝聃, 魏建斐, 王锐. 碳点对阻燃聚对苯二甲酸乙二醇酯性能的影响[J]. 纺织学报, 2021, 42(07): 1-10.
[3] 孙晨颖, 王文庆, 靳高岭, 王锐. 热塑性聚合物阻燃抗熔滴研究现状[J]. 纺织学报, 2021, 42(06): 171-179.
[4] 汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2021, 42(05): 168-177.
[5] 周颖雨, 王锐, 靳高岭, 王文庆. 光诱导表面改性技术在织物阻燃中的应用研究进展[J]. 纺织学报, 2021, 42(03): 181-189.
[6] 姜兆辉, 李永贵, 杨自涛, 郭增革, 张战旗, 齐元章, 金剑. 聚合物基石墨烯复合纤维及其纺织品研究进展[J]. 纺织学报, 2021, 42(03): 175-180.
[7] 杨雅茹, 沈小军, 唐柏林, 牛梅. 超高分子量聚乙烯纤维的无卤阻燃整理[J]. 纺织学报, 2020, 41(11): 109-115.
[8] 刘艳春, 白刚. 小檗碱在聚丙烯腈/醋酸纤维素复合纤维染色中的应用[J]. 纺织学报, 2020, 41(05): 94-98.
[9] 宋乐, 沈兰萍, 黄显雯, 衡芳芳, 马洪波, 欧阳琴, 陈鹏, 王瑄. 木质素/聚丙烯腈复合纤维的制备及其性能[J]. 纺织学报, 2020, 41(02): 7-12.
[10] 李明明, 陈烨, 李夏, 王华平. 纺丝工艺对并列复合聚酯纤维性能的影响[J]. 纺织学报, 2019, 40(12): 16-20.
[11] 王访鹤, 王锐, 魏丽菲, 王照颖, 张安莹, 王德义. 层层自组装阻燃改性聚酯织物的制备及其性能[J]. 纺织学报, 2019, 40(11): 106-112.
[12] 任元林, 姜丽娜, 霍同国, 田甜. 聚丙烯腈纤维阻燃改性研究进展[J]. 纺织学报, 2019, 40(08): 181-188.
[13] 周铃, 靳向煜. 热气流固结纤维网串珠结构可控性及其结晶动力学[J]. 纺织学报, 2019, 40(08): 27-34.
[14] 王岩, 王连军, 陈建芳. 含胍抗菌聚酯纤维的制备及其性能[J]. 纺织学报, 2019, 40(04): 26-31.
[15] 胡雪敏, 杨文秀, 李腾. 氧化石墨烯/聚偏二氟乙烯复合纤维过滤膜的制备及其过滤性能[J]. 纺织学报, 2019, 40(04): 32-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!