纺织学报 ›› 2020, Vol. 41 ›› Issue (02): 7-12.doi: 10.13475/j.fzxb.20190404406

• 纤维材料 • 上一篇    下一篇

木质素/聚丙烯腈复合纤维的制备及其性能

宋乐1,2,3, 沈兰萍1(), 黄显雯2, 衡芳芳2, 马洪波2, 欧阳琴2, 陈鹏2, 王瑄3   

  1. 1.西安工程大学 纺织科学与工程学院, 陕西 西安 710048
    2.中国科学院 宁波材料技术与工程研究所, 浙江 宁波 315201
    3.浙江纺织服装职业技术学院 宁波市先进纺织技术与服装CAD重点实验室, 浙江 宁波 315211
  • 收稿日期:2019-04-16 修回日期:2019-11-23 出版日期:2020-02-15 发布日期:2020-02-21
  • 通讯作者: 沈兰萍
  • 作者简介:宋乐(1995—),女,硕士生。主要研究方向为纺织材料与纺织品设计。
  • 基金资助:
    国家重点研发计划项目(2016YFB0101702)

Preparation and properties of lignin/polyacrylonitrile composite fibers

SONG Le1,2,3, SHEN Lanping1(), HUANG Xianwen2, HENG Fangfang2, MA Hongbo2, OUYANG Qin2, CHEN Peng2, WANG Xuan3   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo,Zhejiang 315201, China
    3. Ningbo Key Laboratory of Advanced Textile Technology & Fashion CAD,Zhejiang Fashion Institute of Technology, Ningbo, Zhejiang 315211, China
  • Received:2019-04-16 Revised:2019-11-23 Online:2020-02-15 Published:2020-02-21
  • Contact: SHEN Lanping

摘要:

为降低传统聚丙烯腈(PAN)纤维的制备成本并实现木质素的高值化利用,对木质素/PAN共混溶液的黏度进行研究,采用湿法纺丝工艺制备了不同比例的木质素/PAN复合纤维,确定其最佳纺丝工艺。借助扫描电子显微镜、差示扫描量热/热重同步分析仪、单纤维物性分析仪、紫外-可见分光光度计等测试手段对复合纤维的结构和性能进行研究。结果表明:相对含量为35%的木质素/PAN纤维仍具有均匀致密的结构,其强度达到 3.81 cN/dtex; 加入木质素后,二者的协同作用赋予了复合纤维良好的热稳定性,该复合纤维在低成本碳纤维和功能纺织材料等领域具有重要的潜在应用价值。

关键词: 木质素/聚丙烯腈复合纤维, 湿法纺丝, 可纺性, 黏度

Abstract:

In order to reduce the preparation cost of existing polyacrylonitrile (PAN) fiber and achieve high value utilization of lignin, different proportions of lignin were used to prepare the lignin/PAN fibers employing the wet spinning process based on the understanding of viscosity of lignin/PAN blending solution, and the results from this work were used to identify the optimal spinning process. The structure and properties of the composite fibers were investigated by scanning electron microscopy, differential scanning calorimetry/thermal resynchronization analyzer, single fiber physical property analyzer, and UV-visible spectrophotometer. The results show that the lignin/PAN fiber with 35% lignin remains a uniform and dense structure, and its strength can reach 3.81 cN/dtex. After the addition of lignin, the synergistic effect of the two gives the composite fiber good thermal stability. The composite fiber has important potential application value in the fields of low cost carbon fiber and functional textile materials.

Key words: lignin/polyacrylonitrile composite fiber, wet spinning, spinnability, viscosity

中图分类号: 

  • TS102.6

表1

木质素/PAN共混溶液的组成"

样品
编号
DMSO质
量/g
木质素
质量/g
PAN溶液
质量/g
木质素相
对含量/%
PAN 11.1 0 100 0
L10 11.1 2.2 100 10
L20 11.1 5.0 100 20
L25 11.1 6.7 100 25
L30 11.1 8.6 100 30
L35 11.1 10.8 100 35
L40 11.1 13.3 100 40
L45 11.1 16.4 100 45
L50 11.1 20.0 100 50

图1

木质素/PAN共混溶液的旋转黏度"

图2

PAN纤维和木质素/PAN复合纤维照片"

图3

不同木质素相对含量共混溶液的紫外吸收光谱图"

图4

290 nm波长处吸光度与木质素质量分数的工作曲线"

图5

木质素/PAN复合纤维的紫外吸收光谱图"

图6

木质素/PAN复合纤维中木质素实际相对含量及保留率"

图7

PAN纤维和木质素/PAN混合纤维SEM照片(×5 000)"

表2

PAN纤维与木质素/PAN复合纤维的基本参数和性能"

纤维
类别
密度/
(g·cm-3)
纤维直径/
μm
线密度/
dtex
取向度/
%
拉伸强度/
(cN·dtex-1)
拉伸模量/
(cN·dtex-1)
断裂伸长率/
%
PAN 1.18 13.25 1.63 74.09 2.50 72.62 19.89
L25 1.19 13.54 1.71 88.03 3.62 94.56 11.14
L35 1.19 13.22 1.63 88.03 3.81 90.38 12.11

图8

木质素/PAN复合纤维在氮气中的DSC曲线"

图9

木质素/PAN复合纤维在氮气中的TG曲线"

[1] 张放台, 任国强, 俞玉芳. 聚丙烯腈纤维[M]. 北京:化学工业出版社, 2014: 1-17.
ZHANG Fangtai, REN Guoqiang, YU Yufang. Polyacrylonitrile fiber[M]. Beijing:Chemical Industry press, 2014: 1-17.
[2] 路瑶, 魏贤勇, 宗志敏, 等. 木质素的结构研究与应用[J]. 化学进展, 2013,25(5):838-858.
LU Yao, WEI Xianyong, ZONG Zhimin, et al. Structural research and application of lignin[J]. Chemical Progress, 2013,25(5):838-858.
[3] RAGAUSKAS A J, BECKHAM G T, BIDDY M J, et al. Lignin valorization: improving lignin processing in the biorefinery[J]. Science (New York), 2014,344(6185):1246843.
[4] 蒋挺大. 木质素[M].2版. 北京:化学工业出版社, 2008: 19.
JIANG Tingda. Lignin[M]. 2nd edition. Beijing:Chemical Industry Press, 2008: 19.
[5] LIU D P, OUYANG Q, JIANG X F, et al. Thermal properties and thermal stabilization of lignosulfonate-acrylonitrile-itaconic acid terpolymer for preparation of carbon fiber[J]. Polymer Degradation & Stability, 2018,150:57-66.
[6] MALDHURE A V, CHAUDHARI A R, EKHE J D. Thermal and structural studies of polypropylene blended with esterified industrial waste lignin[J]. Journal of Thermal Analysis and Calorimetry, 2011,103(2):625-632.
[7] 林剑, 赵广杰. 木质素基碳纤维的研究进展[J]. 北京林业大学学报, 2010,32(4):293-296.
LIN Jian, ZHAO Guangjie. Research progress of wood lignin carbon fiber[J]. Journal of Beijing Forestry University, 2010,32(4):293-296.
[8] 尹江苹, 赵广杰. 木素基碳纤维的工艺研究与应用进展[J]. 木材工业, 2011,25(1):30-33.
YIN Jiangping, ZHAO Guangjie. Progress in technology research and application of lignin-based carbon fiber[J]. Wood Industry, 2011,25(1):30-33.
[9] BAKER D A, RIALS T G. Recent advances in low-cost carbon fiber manufacture from lignin[J]. Journal of Applied Polymer Science, 2013,130(2):713-728.
[10] DONG X, LU C, ZHOU P, et al. Polyacrylonitrile/lignin sulfonate blend fiber for low-cost carbon fiber[J]. Rsc Advances, 2015,5(53):42259-42265.
[11] JIA Z, LU C, LIU Y, et al. Novel lignin/polyacrylonitrile composite hollow fibers prepared by wet-spinning method[J]. ACS Sustainable Chemistry & Engineering, 2016,4(5):2838-2842.
[12] JIN J, OGALE A A. Carbon fibers derived from wet-spinning of equi-component lignin/polyacrylonitrile blends[J]. Journal of Applied Polymer Science, 2018,135(8):45903.
[13] SHAN J, GUAN Y, ZHENG Q, et al. Application of urea/H2O2 activation-oxidation system in degradation of PVA and desizing of polyester/cotton fabric[J]. Journal of Applied Polymer Science, 2009,113(2):860-867.
[14] DOI M, EDWARDS S F. Dynamics of concentrated polymer systems: part 2: molecular motion under flow[J]. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1978,74:1802-1817.
[15] JIANG X F, OUYANG Q, LIU D P, et al. Preparation of low-cost carbon fiber precursors from blends of wheat straw lignin and commercial textile-grade polyacrylonitrile (PAN)[J]. Holzforschung, 2018,72(9):727-734.
[16] QIAN Y, QIU X Q, ZHU S P. Lignin: a nature-inspired sun blocker for broad-spectrum sunscreens[J]. Green Chemistry, 2015,17(1):320-324.
[1] 王迎, 王怡婷, 吴佳庆, 郭亚飞, 郝新敏. 生物基锦纶56用抗静电纺丝油剂的复配及其对短纤维可纺性的影响[J]. 纺织学报, 2021, 42(01): 84-89.
[2] 马跃, 郭静, 殷聚辉, 赵秒, 宫玉梅. 纤维素/氧化纤维素/南极磷虾蛋白复合抗菌纤维的制备与表征[J]. 纺织学报, 2020, 41(11): 34-40.
[3] 李伟, 张正桥, 吴兰娟, 徐珍珍, 倪庆清, 鲁育豪. 磷酸酯-己酸酯化淀粉的制备及其浆膜性能[J]. 纺织学报, 2020, 41(10): 81-86.
[4] 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7.
[5] 岳程飞, 丁长坤, 李璐, 程博闻. 碳化二亚胺/羟基丁二酰亚胺交联改性胶原蛋白纤维制备及其性能[J]. 纺织学报, 2020, 41(03): 1-7.
[6] 欧阳鹏飞, 张玉芳, 贾春紫, 张嘉煜. 用竹浆粕/ 离子液体复配体系纺制的再生纤维及其性能 [J]. 纺织学报, 2020, 41(01): 21-25.
[7] 李阵群, 许多, 魏春艳, 钱永芳, 吕丽华. 棉秆皮纤维素/ 氧化石墨烯纤维的制备及其力学性能和吸附性能 [J]. 纺织学报, 2020, 41(01): 15-20.
[8] 郭增革, 姜兆辉, 贾曌, 蒲丛丛, 李鑫, 程博闻. 压力对聚对苯二甲酸乙二醇酯-聚酰胺6共聚物/聚酰胺6共混物流变性能的影响[J]. 纺织学报, 2019, 40(12): 27-31.
[9] 吴娇, 于湖生, 万兴云, 田平, 李慧敏, 侯晓欣. 抗菌防螨防霉功能改性粘胶纤维的制备及其性能[J]. 纺织学报, 2019, 40(07): 19-23.
[10] 向国栋, 高庆文, 邓倩倩, 张须臻, 王秀华. 阳离子染料易染改性聚酯的固相缩聚工艺与性能[J]. 纺织学报, 2019, 40(04): 21-25.
[11] 张安莹, 王照颖, 王锐, 董振峰, 魏丽菲, 王德义. 阻燃聚左旋乳酸及其纤维的制备与结构性能[J]. 纺织学报, 2019, 40(04): 7-14.
[12] 黄廷健 牟浩 阳知乾 任红檠 徐建军 刘鹏清. 高强高模聚甲醛纤维的制备及其性能[J]. 纺织学报, 2018, 39(10): 1-6.
[13] 刘婷 张安莹 王锐 董振峰 朱志国 王照颖. 季戊四醇磷酸酯/二乙基次磷酸锌协同阻燃聚酰胺6的制备及其性能 [J]. 纺织学报, 2018, 39(09): 8-14.
[14] 李倩 丁长坤 张静 杜建华 程博闻. 胶原/高分子量壳聚糖复合纤维的制备及其性能[J]. 纺织学报, 2018, 39(05): 8-13.
[15] 张梅 贾紫璇 孙小娟 李宏伟. 石墨烯纤维的湿法纺制及其性能[J]. 纺织学报, 2018, 39(01): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!