纺织学报 ›› 2022, Vol. 43 ›› Issue (02): 10-18.doi: 10.13475/j.fzxb.20210701509

• 纤维材料 • 上一篇    下一篇

以聚对苯二甲酸乙二醇酯为前驱体的碳点制备及其应用

王锐1,2,3, 刘彦麟1, 刘蕴钰1, 顾伟文1, 刘紫灵1, 魏建斐1,2,3()   

  1. 1.北京服装学院 材料设计与工程学院, 北京 100029
    2.北京服装学院 服装材料研究开发与评价北京市重点实验室, 北京 100029
    3.北京市纺织纳米纤维工程技术研究中心, 北京 100029
  • 收稿日期:2021-07-05 修回日期:2021-11-26 出版日期:2022-02-15 发布日期:2022-03-15
  • 通讯作者: 魏建斐
  • 作者简介:王锐(1963—),女,教授,博士。主要研究方向为高分子材料的高性能化与功能化。
  • 基金资助:
    北京市教育委员会科技计划一般项目(KM202110012007);北京市自然科学基金面上项目(2222054);北京学者项目(RCQJ20303)

Preparation and application of carbon dots with polyethylene terephthalate as precursor

WANG Rui1,2,3, LIU Yanlin1, LIU Yunyu1, GU Weiwen1, LIU Ziling1, WEI Jianfei1,2,3()   

  1. 1. School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
    2. BeijingKey Laboratory of Clothing Materials R&D and Assessment, Beijing Institute of Fashion Technology, Beijing 100029, China
    3. Beijing Engineering Research Center of Textile Nano Fiber, Beijing 100029, China
  • Received:2021-07-05 Revised:2021-11-26 Published:2022-02-15 Online:2022-03-15
  • Contact: WEI Jianfei

摘要:

针对纺织废弃物的急剧增加以及随之带来的环境污染和石油资源枯竭问题,以聚对苯二甲酸乙二醇酯(PET)和磷酸氢二铵为原料,采用热解法制备了性能优异的磷氮元素掺杂PET基碳点。探究了PET基碳点的最优制备工艺及其形貌结构、化学结构和荧光性能等,探索了其在荧光防伪等方面的应用。得到最优制备工艺为:PET低聚物质量为5 g,磷酸氢二铵质量为2 g,反应温度为260 ℃,反应时间为18 h。该条件下制备的PET基碳点具有典型的激发波长依赖性,其最佳激发光波长为320 nm,最佳发射光波长为390 nm,荧光量子产率可达18.26%,平均荧光寿命为6.96 ns;PET基碳点具有稳定的水溶性和优良的抗干扰性,用其制成的荧光墨水、荧光粉与荧光琼脂在365 nm紫外光照射下均呈现出明亮的蓝色荧光。该PET基碳点在数据加密、防伪、成像、LED器件等方面存在巨大应用潜力,为废弃PET的高值回收利用提供了新的可能。

关键词: 聚对苯二甲酸乙二醇酯, 碳点, 荧光墨水, 热解法, 纺织废弃物高值利用

Abstract:

In response to the rapid increase in textile waste and the consequent environmental pollution and depletion of petroleum resources, using waste polyethylene terephthalate (PET) and ammonium dihydrogen phosphate as raw materials, phosphorus nitrogen doped PET based carbon dots were prepared by pyrolysis method. The optimal preparation process of PET based carbon dots and their morphology, chemical structure and fluorescent properties were studied, and their applications in fluorescent anti-counterfeiting were explored. The results showed that at the optimal conditions of the mass of PET oligomer of 5 g, the ammonium dihydrogen phosphate mass of 2 g, the reaction temperature of 260 ℃, and the reaction time of 18 h, the PET based carbon dots have a typical excitation wavelength dependence. The optimal excitation and emission wavelength is 320 nm and 390 nm respectively, and the fluorescence quantum yield can reach 18.26%. The average fluorescence lifetime is 6.96 ns. PET based carbon dots is stable in water solubility and excellent in anti-interference. The fluorescent inks, phosphors and fluorescent agar made from them all exhibit bright blue fluorescence under 365 nm ultraviolet light irradiation. The PET based carbon dots have huge application potential in data encryption, anti-counterfeiting, imaging, LED devices, and more, providing new possibilities for the high-value recycling of waste PET.

Key words: polyethylene terephthalate, carbon dots, fluorescent ink, pyrolysis method, high value utilization of textile waste

中图分类号: 

  • TS151

图1

不同制备条件下PET基碳点的荧光性能"

图2

PET基碳点在不同分辨率下的透射电镜照片"

图3

PET基碳点的红外光谱图"

图4

PET基碳点的核磁共振H谱"

图5

PET基碳点的XPS谱图"

图6

PET基碳点的UV-Vis吸收波谱图"

图7

PET基碳点在不同波长光激发下的荧光发射谱图及荧光量子产率"

图8

365 nm激发光激发下PET基碳点荧光寿命随发射波长的变化"

图9

pH值和金属离子对PET基碳点荧光性能的影响"

图10

在365 nm紫外光照射下的光学照片"

图11

自然光和紫外光(365 nm)下的淀粉-碳点复合荧光粉末和荧光琼脂水凝胶光学照片"

[1] XIA C, ZHU S, FENG T, et al. Evolution and synjournal of carbon dots: from carbon dots to carbonized polymer dots[J]. Advanced Science, 2019, 6(23): 19013-19016.
[2] JIANG K, SUN S, ZHANG L, et al. Red,green,and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging[J]. Angewandte: Chemie International Edition, 2015, 54(18): 5360-5363.
doi: 10.1002/anie.201501193
[3] 毛惠会, 薛茗月, 韩国成. 荧光碳点的合成、性能及其应用[J]. 功能材料. 2021, 52(1): 1053-1063.
MAO Huihui, XUE Mingyue, HAN Guocheng. Synjournal,properties and applications of fluorescent carbon dots[J]. Journal of Functional Materials, 2021, 52(1): 1053-1063.
[4] 张盼, 赵顺省, 王雅坤, 等. 荧光碳点的合成及其应用研究进展[J]. 功能材料, 2020, 51(2): 2019-2026,2060.
ZHANG Pan, ZHAO Shunsheng, WANG Yakun, et al. Progress in the synjournal and application of fluorescent carbon dots[J]. Journal of Functional Materials, 2020, 51(2): 2019-2026,2060.
[5] XU Y, LIU J, GAO C, et al. Applications of carbon quantum dots in electrochemiluminescence: a mini review[J]. Electrochemistry Communications, 2014, 48:151-154.
doi: 10.1016/j.elecom.2014.08.032
[6] SONG Y, ZHU S, ZHANG S, et al. Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine[J]. Journal of Materials Chemistry C, 2015, 3(23): 5976-5984.
doi: 10.1039/C5TC00813A
[7] JIANG K, ZHANG L, LU J, et al. Triple-mode emission of carbon dots: applications for advanced anti-counterfeiting[J]. Angewandte Chemie, 2016, 55(25): 231-235.
[8] YANG L, JIANG W, QIU L, et al. One pot synjournal of highly luminescent polyethylene glycol anchored carbon dots functionalized with a nuclear localization signal peptide for cell nucleus imaging[J]. Nanoscale, 2015, 7(14): 6104-6113.
doi: 10.1039/C5NR01080B
[9] SUN H, WU L, WEI W, et al. Recent advances in graphene quantum dots for sensing[J]. Materials Today, 2013, 16(11): 433-442.
doi: 10.1016/j.mattod.2013.10.020
[10] BACON M, BRADLEY S J, NANN T. Graphene quantum dots[J]. Particle & Particle Systems Characterization, 2014, 31(4): 415-428.
[11] SUN Xiancheng, LEI Yu. Fluorescent carbon dots and their sensing applications[J]. Trends in Analytical Chemisty, 2017, 89:163-180.
[12] 李淑君. 具有可调荧光特征的杂原子掺杂碳点的制备及应用[D]. 新乡:河南师范大学, 2019:10-13.
LI Shujun. Preparation and application of heteroatom-doped carbon dots with tunable fluorescence characteristics[D]. Xinxiang: Henan Normal University, 2019: 10-13.
[13] RECKMEIER C, SCHNEIDER J, SUSHA A, et al. Luminescent colloidal carbon dots: optical properties and effects of doping[J]. Invited Optics Express, 2016, 2:312-340.
[14] 石佳, 奥美珍, 马媛媛, 等. 氮磷共掺杂碳点的合成及其对Co2+的检测[J]. 化学研究与应用, 2018, 30(11): 1843-1849.
SHI Jia, AO Meizhen, MA Yuanyuan, et al. Synjournal of nitrogen and phosphorus co-doped carbon dots and the detection for Co2+[J]. Chemical Research and Application, 2018, 30(11): 1843-1849.
[15] PAN D, ZHANG J, LI Z, et al. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots[J]. Advanced Materials, 2010, 22(6): 734-738.
doi: 10.1002/adma.v22:6
[16] DAN Q, MIN Z, LIGONG Z, et al. Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots[J]. Scientific Reports, 2014, 4:1-9.
[17] DING H, WEI J S, XIONG H M. Nitrogen and sulfur co-doped carbon dots with strong blue luminescence[J]. Nanoscale, 2014, 6(22): 13817-13823.
doi: 10.1039/C4NR04267K
[18] XU Q, LIU Y, GAO C, et al. Synjournal,mechanistic investigation,and application of photoluminescent sulfur and nitrogen co-doped carbon dots[J]. Journal of Materials Chemistry C, 2015, 38:9885-9893.
[19] 鲁诗言, 于淑娟, 陈国全, 等. 氮、磷掺杂碳点的合成及在Pd2+传感中的应用[J]. 发光学报, 2021, 42(1): 53-60.
LU Shiyan, YU Shujuan, CHEN Guoquan, et al. Synjournal of nitrogen and phosphorus doped carbon dots and their application in Pd2+ sensing[J]. Chinese Journal of Luminescence, 2021, 42(1): 53-60.
doi: 10.37188/CJL.20200309
[20] SUN X, BRÜCKNER C, LEI Y. One-pot and ultrafast synjournal of nitrogen and phosphorus co-doped carbon dots possessing bright dual wavelength fluorescence emission[J]. Nanoscale, 2015, 7(41): 17278-17282.
doi: 10.1039/C5NR05549K
[21] QU D, SUN Z, ZHENG M, et al. Three colors emission from S,N co-doped graphene quantum dots for visible light H2 production and bioimaging[J]. Advanced Optical Materials, 2015, 3(3): 360-367.
doi: 10.1002/adom.v3.3
[22] 张雪, 耿乙迦, 陶淞源, 等. 碳化聚合物点发光主体的探究[J]. 高等学校化学学报, 2019, 40(12): 2521-2525.
ZHANG Xue, GENG Yijia, TAO Songyuan, et al. Main luminescent centers of carbonized polymer dots[J]. Chemical Journal of Chinese Universities, 2019, 40(12): 2521-2525.
[23] XIONG Y, SCHNEIDER J, RECKMEIER C J, et al. Carbonization conditions influence the emission characteristics and the stability against photobleaching of nitrogen doped carbon dots[J]. Nanoscale, 2017, 9(32): 11730-11738.
doi: 10.1039/C7NR03648E
[24] KIM H N, LEE M H, KIM H J, et al. A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions[J]. Chemical Society Reviews, 2008, 37(8): 1465-1472.
doi: 10.1039/b802497a
[25] HUANG S, WANG L, HUANG C, et al. A carbon dots based fluorescent probe for selective and sensitive detection of hemoglobin[J]. Sensors and Actuators B: Chemical, 2015, 221:1215-1222.
doi: 10.1016/j.snb.2015.07.099
[26] HUANG S, ZHU F, QIU H, et al. A sensitive quantum dots-based "OFF-ON" fluorescent sensor for ruthenium anticancer drugs and ctDNA[J]. Colloids and Surfaces B: Biointerfaces, 2014, 117:240-247.
doi: 10.1016/j.colsurfb.2014.02.031
[27] XIONG Y, SCHNEIDER J, USHAKOVA E V, et al. Influence of molecular fluorophores on the research field of chemically synthesized carbon dots[J]. Nano Today, 2018, 23:124-139.
doi: 10.1016/j.nantod.2018.10.010
[28] BOTTINI M, BALASUBRAMANIAN C, DAWSON M I, et al. Isolation and characterization of fluorescent nanoparticles from pristine and oxidized electric arc-produced single-walled carbon nanotubes[J]. The Journal of Physical Chemistry B, 2006, 110(2): 831-836.
doi: 10.1021/jp055503b
[29] LI X, WANG H, SHIMIZU Y, et al. Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents[J]. Chemical Communications, 2011, 47(3): 932-934.
doi: 10.1039/C0CC03552A
[30] ZHOU J, BOOKER C, LI R, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs)[J]. Journal of the American Chemical Society, 2007, 129(4): 744-745.
doi: 10.1021/ja0669070
[1] 顾伟文, 王文庆, 魏丽菲, 孙晨颖, 郝聃, 魏建斐, 王锐. 碳点对阻燃聚对苯二甲酸乙二醇酯性能的影响[J]. 纺织学报, 2021, 42(07): 1-10.
[2] 靳琳琳, 田俊凯, 李家炜, 戚栋明, 沈晓炜, 邬春涛. 可降解聚羟基乙酸低聚物改性聚酯的合成及其性能[J]. 纺织学报, 2021, 42(01): 16-21.
[3] 廖壑, 王建宁, 张东剑, 甘学辉, 张玉梅, 王华平. 并列复合纺丝孔道内流动组分的界面分布数值模拟[J]. 纺织学报, 2021, 42(01): 30-34.
[4] 成世杰, 王晨洋, 张宏伟, 左丹英. 硼氮掺杂碳点对棉织物防紫外线性能的影响[J]. 纺织学报, 2020, 41(06): 93-98.
[5] 郭增革, 姜兆辉, 贾曌, 蒲丛丛, 李鑫, 程博闻. 压力对聚对苯二甲酸乙二醇酯-聚酰胺6共聚物/聚酰胺6共混物流变性能的影响[J]. 纺织学报, 2019, 40(12): 27-31.
[6] 周铃, 靳向煜. 热气流固结纤维网串珠结构可控性及其结晶动力学[J]. 纺织学报, 2019, 40(08): 27-34.
[7] 王勇军 陈世昌 刘梅 曾卫卫 吕汪洋 张先明 陈文兴. 高分子量聚对苯二甲酸乙二醇酯中低聚物的提取及其表征[J]. 纺织学报, 2018, 39(11): 1-7.
[8] 林启松 江力 汪凯 张顺花. 新型改性聚酯的制备及其性能[J]. 纺织学报, 2018, 39(08): 22-26.
[9] 靳昕怡 王颖 朱志国 刘彦麟 王锐. 复合抑熔滴剂对阻燃聚酯共混物燃烧性能的影响[J]. 纺织学报, 2018, 39(08): 15-21.
[10] 娄佳慧 王锐 张文娟 董振峰 朱志国 张秀芹 刘继广. 有机钛-硅催化剂合成聚酯的动力学研究[J]. 纺织学报, 2018, 39(07): 1-7.
[11] 孔抵柱 李家炜 徐红 张琳萍 钟毅 隋晓锋 毛志平. 环三磷腈和三嗪衍生物协同阻燃对聚酯性能的影响[J]. 纺织学报, 2017, 38(07): 11-17.
[12] 张静静 王颖 宋丹 国凤敏 陈超. 聚对苯二甲酸乙二醇酯与聚对苯二甲酸丁二醇酯的热分解性能[J]. 纺织学报, 2016, 37(07): 34-38.
[13] 倪永 刘志红 胡腾蛟. PET、PTT与PBT材料的定性与定量鉴别方法[J]. 纺织学报, 2012, 33(10): 28-32.
[14] 宋移团;王锐;张大省. 衣康酸/丙烯酸与聚酯织物接枝共聚性能[J]. 纺织学报, 2007, 28(3): 16-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[2] 张金秋;张华;郝新敏;姜凤琴. 大麻纤维高温煮练时间与脱胶质量的关系[J]. 纺织学报, 2006, 27(2): 81 -83 .
[3] 陈维国;戴瑾瑾;王俊苏;贾成通;汪智勇;孟照成. 高耐光色牢度还原染料对涤纶织物的热熔法染色[J]. 纺织学报, 2008, 29(9): 82 -86 .
[4] 李重;. 双圆弧在服装纸样设计中的应用[J]. 纺织学报, 2005, 26(5): 101 -102 .
[5] 崔毅华. 玄武岩连续纤维的基本特性[J]. 纺织学报, 2005, 26(5): 120 -121 .
[6] 李发学;张广平;吴丽莉;俞建勇. 三羟甲基乙烷/新戊二醇二元体系的DSC研究[J]. 纺织学报, 2004, 25(05): 59 -60 .
[7] 周赳;吴文正. 有彩数码提花织物的创新设计原理和方法[J]. 纺织学报, 2006, 27(5): 6 -9 .
[8] 李利君;蒲宗耀;李风;王桦;兰彬. 聚苯硫醚纤维的热降解动力学[J]. 纺织学报, 2010, 31(12): 4 -8 .
[9] 焦亚男;李嘉禄. 异制件用三维编织复合材料的拉伸性能[J]. 纺织学报, 2006, 27(9): 1 -4 .
[10] 王鸿博;高卫东;何艳丽;李静;顾璐英. 磁控溅射PET非织造基银膜的微结构及性能[J]. 纺织学报, 2009, 30(02): 29 -33 .