纺织学报 ›› 2022, Vol. 43 ›› Issue (10): 31-35.doi: 10.13475/j.fzxb.20210901308

• 纺织工程 • 上一篇    下一篇

转杯纺分梳排杂区的气流场数值模拟

杨瑞华(), 何闯, 龚新霞, 陈鹤文   

  1. 生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
  • 收稿日期:2021-09-06 修回日期:2022-03-25 出版日期:2022-10-15 发布日期:2022-10-28
  • 作者简介:杨瑞华(1981—),女,教授,博士。主要研究方向为新型纺纱方法。E-mail: yangrh@jiangnan.edu.cn
  • 基金资助:
    江苏省自然科学基金面上项目(BK20181350)

Numerical simulation of airflow field in carding and trash removal zone of rotor spinning

YANG Ruihua(), HE Chuang, GONG Xinxia, CHEN Hewen   

  1. Key Laboratory of Eco-Textiles(Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2021-09-06 Revised:2022-03-25 Published:2022-10-15 Online:2022-10-28

摘要:

为探究转杯纺不同类型分梳排杂机构的排杂特征,选用自由落杂分梳腔和吸杂分梳腔体2种分梳排杂装置,通过SolidWorks建模软件分别建立物理模型,在Fluent 19.0中进行仿真模拟,分析2类排杂机构(模型I和模型Ⅱ)内气流场的速度、压强及湍动能特点对成纱过程中排杂的影响规律,并采用2种类型的纺纱器进行实验测试。结果表明:模型Ⅰ和模型Ⅱ 2种分梳腔内的压强分布均为负压,2种分梳腔内气流的速度分布不匀;其中模型Ⅰ排杂口处出现了湍动能,不利于杂质的排出,模型Ⅱ排杂区未出现湍动能变化,有利于排杂;通过纺纱实验验证了Fluent模拟结果的准确性。

关键词: 转杯纺, 分梳腔, 气流场, Fluent模拟, 排杂区

Abstract:

In order to explore trash-removing characteristics of rotor spinning combing and trash removal mechanism, two types of combing and trash removal devices were selected, and a physical model was established through 3-D modeling software. Further, the distribution characteristics of air pressure, velocity and turbulent kinetic energy in these two trash removal devices were obtained and the effects of trash-removing were compared. Experiment results show that the pressure distribution in the two carding cavities of model I and model Ⅱ was negative pressure, the velocity distribution in the two carding cavities was uneven. Moreover, turbulent kinetic energy was identified at the impurity discharge port of model I, which was not conducive to the discharge of impurities. However, no change of turbulent kinetic energy was found in the trash discharge area of model Ⅱ, which was conducive to the removal of impurities. The accuracy of Fluent simulation results was validated by the spinning experiments.

Key words: rotor spinning, carding cavity, airflow field, Fluent simulation, trash removal zone

中图分类号: 

  • TS104

图1

转杯纺分梳排杂通道内气流场模型Ⅰ"

图2

转杯纺分梳排杂通道内气流场模型Ⅱ"

图3

模型Ⅰ截面(Y=16 mm)"

图4

模型Ⅰ截面气流压强分布(Y=16 mm)"

图5

模型Ⅰ截面气流速度分布(Y=16 mm)"

图6

模型Ⅰ截面湍动能分布(Y=16 mm)"

图7

模型Ⅱ截面(Y=34 mm)"

图8

模型Ⅱ截面气流压强分布(Y = 34 mm)"

图9

分梳腔内气流的压强分布"

图10

模型Ⅱ截面气流速度分布(Y=34 mm)"

图11

分梳腔内气流的速度分布"

图12

模型Ⅱ截面湍动能分布(Y=34 mm)"

图13

模型Ⅱ(Y=34 mm)截面输纤通道入口处气流速度矢量分布"

图14

分梳腔内气流的湍动能分布"

表1

36.4 tex纯棉纱线质量数据对比"

类别 1 mm和2 mm毛
羽总和/
(个·(100 m)-1)
3 mm及以上毛
羽总和/
(个·(100 m)-1)
条干不匀CV
值/%
断裂强力/
cN
断裂强度/
(cN·tex-1)
断裂强度不匀
率/%
断裂伸长
率/%
转杯纺乌斯特
50%指标
6 050 1 460 13.85 462.32 12.51 7.36 6.54
模型Ⅰ纱线 2 952 961 13.54 493.40 13.53 3.78 7.42
模型Ⅱ纱线 1 587 485 12.81 505.70 13.90 2.91 8.34
[1] 杨锁廷, 马会英. 现代纺纱技术[M]. 北京: 中国纺织出版社, 2004: 235-236.
YANG Suoting, MA Huiying. Modern spinning technology[M]. Beijing: China Textile & Apparel Press, 2004:235-236.
[2] 徐惠君. 转杯纺纱现状及跨世纪发展(上):发展过程和现状[J]. 现代纺织技术, 1999(10):44-48.
XU Huijun. Rotor spinning situation and cross-century development:Ⅰ: development process and the currentsituation[J]. Advanced Textile Technology, 1999(10): 44-48.
[3] 洪新强, 伍枝平. 喷气涡流纺纱与转杯纺纱的对比分析[J]. 现代纺织技术, 2010, 18(5):13-15.
HONG Xinqiang, WU Zhiping. Comparative analysis of air-jet vortex spinning and rotor spinning[J]. Advanced Textile Technology, 2010, 18(5):13-15.
[4] 朱文华, 邓永恭, 孙湘才. 气流纺排杂纺纱器流场分布与排杂性能的研究[J]. 纺织学报, 1982, 3(7):3-12.
ZHU Wenhua, DENG Yonggong, SUN Xiangcai. The air pressure field distribution and the performance of dust-exhaust spinning unit of rotor spinning[J]. Journal of Textile Research, 1982, 3(7): 3-12.
[5] 郝全兰. 抽气式转杯纺纱机排杂的研究[J]. 天津工业大学学报, 1994, 13(4): 94-99.
HAO Quanlan. Study on impurity removal of air extraction rotor spinning machine[J]. Journal of Tiangong University, 1994, 13(4): 94-99.
[6] 林惠婷, 汪军, 张志. 转杯纺排杂区流场与排杂性能[J]. 东华大学学报(自然科学版), 2018, 44(1): 67-73.
LIN Huiting, WANG Jun, ZHANG Zhi. Airflow field in the trash removal zone and trash removal performance in rotor spinning[J]. Journal of Donghua Univer-sity (Natural Science Edition), 2018, 44(1): 67-73.
[7] 张奇, 汪军, 曾泳春. 转杯纺纺杯内气流流动的二维数值模拟[J]. 纺织学报, 2013, 34(2):51-54.
ZHANG Qi, WANG Jun, ZENG Yongchun. Numerical study of two-dimensional air flow in spinning cup of rotor spinning[J]. Journal of Textile Research, 2013, 34(2): 51-54.
[8] 陈克彰. 转杯纺纱技术的发展趋势[J]. 棉纺织技术, 1993, 21(8):9-11.
CHEN Kezhang. The development trend of rotor spinning technology[J]. Cotton Textile Technology, 1993, 21(8): 9-11.
[9] YU J C, CHEN K, LI X Y, et al. Performance and structure changes of the aromatic co-polysulfonamide fibers during thermal-oxidative aging process[J]. Journal of Applied Polymer Science, 2016, 133(41): 44078-44088.
[10] JIANG G S, HUANG W F, LI L, et al. Structure and properties of regenerated cellulose fibers from different technology processes[J]. Carbohydrate Polymers, 2012, 87(3): 2012-2018.
doi: 10.1016/j.carbpol.2011.10.022
[11] MUTHY N S, BEDNARCZYK C, MOORE R A F, et al. Analysis of small-angle X-ray scattering from fibers: structural changes in nylon 6 upon drawing and annealing[J]. Journal of Polymer Science Part B: Polymer Physics, 1996, 34(5): 821-835.
doi: 10.1002/(SICI)1099-0488(19960415)34:5<821::AID-POLB1>3.0.CO;2-P
[12] MUTHY N S, GRUBB D T. Tilted lamellae in an affinely deformed 3D macrolattice and elliptical features in small-angle scattering[J]. Journal of Polymer Science Part B: Polymer Physics, 2006, 44(8): 1277-1286.
doi: 10.1002/polb.20778
[1] 汪军, 史倩倩, 李玲, 张玉泽. 双喂给双分梳转杯纺技术研究进展[J]. 纺织学报, 2022, 43(08): 12-20.
[2] 杨瑞华, 潘博, 郭霞, 王利军, 李健伟. 环锭纺及转杯纺和喷气涡流纺混色纱的纤维混合效果研究[J]. 纺织学报, 2021, 42(07): 76-81.
[3] 史倩倩, 王姜, 张玉泽, 林惠婷, 汪军. 转杯纺纱器气流场形成机制的数值分析[J]. 纺织学报, 2021, 42(02): 180-184.
[4] 初曦, 邱华. 不同压强条件下环锭旋流喷嘴内部流场模拟[J]. 纺织学报, 2020, 41(09): 33-38.
[5] 邓茜茜, 杨瑞华, 徐亚亚, 高卫东. 转杯纺混色棉纱的纤维混合均匀度[J]. 纺织学报, 2019, 40(07): 31-37.
[6] 广少博, 金玉珍, 祝晓晨. 喷气织机延伸喷嘴内气流场特性分析[J]. 纺织学报, 2019, 40(04): 135-139.
[7] 尚珊珊, 郁崇文, 杨建平, 钱希茜. 喷气涡流纺纺纱过程中的气流场数值模拟[J]. 纺织学报, 2019, 40(03): 160-167.
[8] 杨瑞华, 徐亚亚, 韩瑞叶, 薛元, 高卫东. 多通道转杯纺混色纱的Friele配色模型[J]. 纺织学报, 2019, 40(03): 44-48.
[9] 林惠婷, 高备, 张玉泽, 史倩倩, 汪军. 转杯纺旁路通道设计对成纱质量的影响[J]. 纺织学报, 2019, 40(02): 153-158.
[10] 史倩倩, 高备, 林惠婷, 张玉泽, 汪军. 传统型与双喂给转杯纺纺纱器及其成纱性能对比[J]. 纺织学报, 2019, 40(02): 63-68.
[11] 杨瑞华 韩瑞叶 徐亚亚 薛元 王鸿博 高卫东. 数码转杯纺混色纱中有色纤维混合效果分析[J]. 纺织学报, 2018, 39(07): 32-38.
[12] 徐亚亚 杨瑞华 韩瑞叶 薛元 高卫东. 应用Kubelka-Munk双常数理论的数码转杯纱混色效果预测[J]. 纺织学报, 2018, 39(06): 36-41.
[13] 杨瑞华 刘超 薛元 高卫东. 转杯复合纺成纱器内流场模拟及纱线质量分析[J]. 纺织学报, 2018, 39(03): 26-30.
[14] 林惠婷 汪军. 纤维在输纤通道气流场中运动的模拟[J]. 纺织学报, 2018, 39(02): 55-61.
[15] 韩瑞叶 杨瑞华 薛元 高卫东. 数码转杯纺的Stearns-Noechel配色模型[J]. 纺织学报, 2017, 38(12): 27-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!