纺织学报 ›› 2023, Vol. 44 ›› Issue (06): 137-143.doi: 10.13475/j.fzxb.20220304201

• 染整与化学品 • 上一篇    下一篇

离子型水凝胶复合织物构筑及其应变传感性能

徐瑞东1, 刘红1, 王航1, 朱士凤1,2, 曲丽君1,2, 田明伟1,2()   

  1. 1.青岛大学 纺织服装学院, 山东 青岛 266071
    2.青岛大学 省部共建生物多糖纤维成形及生态纺织国家重点实验室, 山东 青岛 266071
  • 收稿日期:2022-03-10 修回日期:2022-07-13 出版日期:2023-06-15 发布日期:2023-07-20
  • 通讯作者: 田明伟
  • 作者简介:徐瑞东 (1994—),男,博士生。主要研究方向为智能传感织物。
  • 基金资助:
    国家重点研发计划项目(2022YFB3805801);国家重点研发计划项目(2022YFB3805802);泰山学者工程专项(tsqn202211116);山东省高等学校重大科技计划创新工程项目(2019JZZY010335);山东省高等学校重大科技计划创新工程项目(2019JZZY010340);山东省青创科技创新团队项目(2020KJA013);国家自然科学基金项目(22208178);山东省自然科学基金项目(ZR2020QE074);青岛市关键技术攻关及产业化示范类项目(23-1-7-zdfn-2-hz);青岛市市南区科技计划项目(2022-3-005-DZ);纺织行业智能纺织服装柔性器件重点实验室开放课题(SDHY2223)

Construction and strain sensing properties of an ionic hydrogel composite fabric

XU Ruidong1, LIU Hong1, WANG Hang1, ZHU Shifeng1,2, QU Lijun1,2, TIAN Mingwei1,2()   

  1. 1. College of Textiles and Clothing, Qingdao University, Qingdao, Shandong 266071, China
    2. State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, Shandong 266071, China
  • Received:2022-03-10 Revised:2022-07-13 Published:2023-06-15 Online:2023-07-20
  • Contact: TIAN Mingwei

摘要:

针对离子型水凝胶界面舒适性差和耐久性低的问题,提出吸湿透气织物为基体的复合型水凝胶应变传感器的研究策略,构建丙烯酰胺水溶液溶剂体系下共溶解N-N亚甲基双丙烯酰胺、过硫酸铵以及氯化锂的水凝胶体系,采用热聚合工艺合成聚丙烯酰胺/氯化锂(PAAM/LiCl)离子型导电水凝胶,制备三明治结构的离子型水凝胶针织复合织物,研究不同拉伸比例对复合织物电流变化率的影响规律。结果表明:离子型水凝胶复合织物的应变灵敏度系数最高可达0.94,表现出优异的灵敏度;在50%的应变条件下,稳定拉伸5 000次后仍具有良好的稳定性;在室温下放置7 d,复合织物的质量变化率仅为3.5%,表现出优异的耐久性。离子型水凝胶复合织物对语言以及人体运动状态有优异的识别能力,在可穿戴应变传感领域具有广阔的应用前景。

关键词: 离子型水凝胶, 针织物, 热聚合工艺, 离子型水凝胶复合织物, 应变传感

Abstract:

Objective Ionic strain sensing devices are the most promising technology for human-computer interaction. However, current strain sensing devices still suffer from poor interface comfort and low durability of ionic hydrogel. Herein, this work proposes a novel strategy to break through the above bottleneck. A composite fabric was fabricated by encapsulating ionic hydrogel into a knitted fabric for wearable comfort and excellent strain sensing properties.
Method The ionic hydrogel composite fabric was a typical sandwich structure, where the ionic hydrogel was encapsulated by two layers of knitted fabric. The ionic hydrogel was polymerized by acrylamide in a thermal environment. Lithium chloride (LiCl) was used as conductive material. The ionic hydrogel composite fabric was found to have good strain sensing capability, stemming from its three-dimensional cross-linked mesh micro-structure. When the fabric was stretched, the mesh micro-structure of the ionic hydrogel was compressed. Consequently, the ions movement was obstructed, causing an increase in the resistance of the ionic hydrogel composite fabric.
Results The ionic hydrogel has a three-dimensional mesh-like porous structure, which can lock in a large amount of water and provide a medium of movement for ions. Meanwhile, its excellent elasticity and soft feel properties can be obtained by the unique loop structure of the knitted fabric substrate. The ionic hydrogel composite fabric had good strain-sensing properties (Fig. 2) indicated by the slope of the current change rate vs applied strain. The gauge factor gauge factor is a critical index to reflect sensitivity of the strain sensors. The gauge factor was 0.94 with strain ranging from 0% to 30%, then the gauge factor slowed down to 0.82 with strain ranging from 30% to 60%, and the gauge factor decreased to 0.37 with high strain ranging from 60% to 100%. Meanwhile, the response and recovery times for the composite fabric were 310 and 346 ms, respectively (Fig. 3). In order to evaluate the hysteresis performance of the composite fabric under high strain stimulus, the changes in relative current (ΔI/I0, in which ΔI=I-I0 and I are the currents before and after strain stimulus, respectively) of the composite fabric during loading-unloading cycles at a maximum strain of 100% was recorded (Fig. 4). The hysteresis was shown at low stretching ratio, which was due to the inability of the reticular microstructure of the ionic hydrogel to recover in time. The composite fabric exhibited wide sensing range (up to 100%)(Fig. 5). The ionic hydrogel composite fabric possesses stable electrical property, the current change ratio of the fabric maintained constant after 5 000 cyclic stretchings (Fig. 6). It was also found that the ionic hydrogel composite fabric was environmentally friendly, with the mass change ratio of the composite fabric being only 3.5%, while that for the pure ionic hydrogel being 76.5%.
Conclusion The design of ionic hydrogel composite fabric enables combined high strain-sensing and environment stability properties. Specifically, the composite fabric shows high sensitivity and wide working range, which is due to the three-dimensional mesh-like porous structure of the ionic hydrogel. In addition, the fabric substrates can be used as water-loss shield layer reducing the moisture loss ratio of the hydrogel. As the proof of concept, a wearable human-computer interaction device has been fabricated to monitor the human movement and recognize voice. Therefore, this work opens a new path for flexible strain sensing devices and has great potential in the field of wearable interaction.

Key words: ionic hydrogel, knitted fabric, thermal polymerization process, ionic hydrogel composite fabric, strain sensing

中图分类号: 

  • TM242

图1

离子型水凝胶与针织物的表面形貌"

图2

离子型水凝胶复合织物的灵敏度"

图3

离子水凝胶复合织物的响应时间"

图4

离子型水凝胶复合织物应变-电流变化率曲线"

图5

离子型水凝胶复合织物的应变传感范围"

图6

离子型水凝胶复合织物循环测试结果"

图7

离子型水凝胶复合织物的保水性能"

图8

离子型水凝胶复合织物的运动识别功能"

图9

离子型水凝胶复合织物的语音识别功能"

[1] 田明伟, 李增庆, 卢韵静, 等. 纺织基柔性力学传感器研究进展[J]. 纺织学报, 2018, 39(5): 170-176.
TIAN Mingwei, LI Zengqing, LU Yunjing, et al. Recent progress of textile-based flexible mechanical sensors[J]. Journal of Textile Research, 2018, 39(5): 170-176.
[2] ZHANG Mingchao, WANG Chunya, WANG Huimin, et al. Carbonized cotton fabric for high-performance wearable strain sensors[J]. Advanced Functional Materials, 2017. DOI: 10.1002/adfm.201604795.
doi: 10.1002/adfm.201604795
[3] CHEN Jianwen, WANG Fei, ZHU Guoxuan, et al. Breathable strain/temperature sensor based on fibrous networks of ionogels capable of monitoring human motion, respiration, and proximity[J]. ACS Applied Materials & Interfaces, 2021, 13(43): 51567-51577.
[4] NING Chuan, CHENG Renwei, JIANG Yang, et al. Helical fiber strain sensors based on triboelectric nanogenerators for self-powered human respiratory monitoring[J]. ACS Nano, 2022, 16(2): 2811-2821.
doi: 10.1021/acsnano.1c09792
[5] WANG Shan, CHENG Hanlin, YAO Bing, et al. Self-adhesive, stretchable, biocompatible, and conductive nonvolatile eutectogels as wearable conformal strain and pressure sensors and biopotential electrodes for precise health monitoring[J]. ACS Applied Materials & Interfaces, 2021, 13(17): 20735-20745.
[6] LIU Wen, CHEN Qian, HUANG Yihe, et al. In situ laser synthesis of Pt nanoparticles embedded in graphene films for wearable strain sensors with ultra-high sensitivity and stability[J]. Carbon, 2022, 190: 245-254.
doi: 10.1016/j.carbon.2022.01.020
[7] 王晓菲, 万爱兰, 沈新燕. 基于聚多巴胺修饰的聚吡咯导电织物制备与应变传感性能[J]. 纺织学报, 2021, 42(6): 114-119.
WANG Xiaofei, WAN Ailan, SHEN Xinyan. Preparation and strain sensing of dopamine-modified polypyrrole conductive fabric[J]. Journal of Textile Research, 2021, 42(6): 114-119.
[8] TANG Ning, ZHOU Cheng, QU Danyao, et al. A highly aligned nanowire-based strain sensor for ultrasensitive monitoring of subtle human motion[J]. Small, 2020. DOI: 10.1002/smll.202001363.
doi: 10.1002/smll.202001363
[9] SUN Fengqiang, TIAN Mingwei, SUN Xuantong, et al. Stretchable conductive fibers of ultrahigh tensile strain and stable conductance enabled by a worm-shaped graphene microlayer[J]. Nano Letters, 2019, 19(9): 6592-6599.
doi: 10.1021/acs.nanolett.9b02862 pmid: 31434486
[10] HU Xili, TIAN Mingwei, XU Tailin, et al. Multiscale disordered porous fibers for self-sensing and self-cooling integrated smart sportswear[J]. ACS Nano, 2020, 14(1): 559-567.
doi: 10.1021/acsnano.9b06899 pmid: 31855404
[11] 杨宁, 王进, 田明伟, 等. 石墨烯改性弹性织物的应变传感性能研究[J]. 棉纺织技术, 2021, 49(8): 14-17.
YANG Ning, WANG Jin, TIAN Mingwei, et al. Study on strain sensing property of graphene-modified elastic fabric[J]. Cotton Textile Technology, 2021, 49(8): 14-17.
[12] ZENG Zhen, HAO Baowei, LI Daiqi, et al. Large-scale production of weavable, dyeable and durable spandex/CNT/cotton core-sheath yarn for wearable strain sensors[J]. Composites Part A: Applied Science and Manufacturing, 2021. DOI: 10.1016/j.compositesa.2021.106520.
doi: 10.1016/j.compositesa.2021.106520
[13] ZHOU Jian, YU Hu, XU Xuezhu, et al. Ultrasensitive, stretchable strain sensors based on fragmented carbon nanotube papers[J]. ACS Applied Materials & Interfaces, 2017, 9(5): 4835-4842.
[14] TANG Wenzhi, YAN Tingting, WANG Fei, et al. Rapid fabrication of wearable carbon nanotube/graphite strain sensor for real-time monitoring of plant growth[J]. Carbon, 2019, 147: 295-302.
doi: 10.1016/j.carbon.2019.03.002
[15] 王双, 刘玮, 刘晓霞, 等. 嵌入机织物的碳纳米管纱线应变传感性能[J]. 纺织学报, 2018, 39(5): 43-48.
WANG Shuang, LIU Wei, LIU Xiaoxia, et al. Strain sensing of carbon nanotube yarn embedded into woven fabric[J]. Journal of Textile Research, 2018, 39(5): 43-48.
doi: 10.1177/004051756903900108
[16] ZHAO Shuqiang, ZHENG Peixiao, CONG Honglian, et al. Facile fabrication of flexible strain sensors with AgNPs-decorated CNTs based on nylon/PU fabrics through polydopamine templates[J]. Applied Surface Science, 2021. DOI: 10.1016/j.apsusc.2021.149931.
doi: 10.1016/j.apsusc.2021.149931
[17] ZOU Qiushun, HE Kai, OUYANG Jian, et al. Highly sensitive and durable sea-urchin-shaped silver nanoparticles strain sensors for human-activity monitoring[J]. ACS Applied Materials & Interfaces, 2021, 13(12): 14479-14488.
[18] KIM Chong Chan, LEE Hyun Hee, OH Kyu Hwan, et al. Highly stretchable, transparent ionic touch panel[J]. Science, 2016, 353(6300): 682-687.
doi: 10.1126/science.aaf8810 pmid: 27516597
[19] SUN Jeong Yun, CHRISTOPH Keplinger, GEORGE M Whitesides, et al. Ionic skin[J]. Advanced Materials, 2014, 26(45): 7608-7614.
doi: 10.1002/adma.v26.45
[20] SUN Jeong Yun, ZHAO Xuanhe, ILLEPERUMA Widusha R K, et al. Highly stretchable and tough hydrogels[J]. Nature, 2012, 489(7414): 133-136.
doi: 10.1038/nature11409
[21] 李平, 曾良鹏, 郭宏磊, 等. 两性离子水凝胶的研究进展[J]. 高分子学报, 2020, 51(12):1307-1320.
LI Ping, ZENG Liangpeng, GUO Honglei, et al. Research progress in zwitterionic hydrogels[J]. Acta Polymerica Sinica, 2020, 51(12):1307-1320.
[22] 仝瑞平, 陈广学, 田君飞, 等. 纤维素基离子水凝胶用于应变传感器[J]. 数字印刷, 2019(3): 184-189.
TONG Ruiping, CHEN Guangxue, TIAN Junfei, et al. Cellulose-based ionic hydrogels used for strain sensors[J]. Digital Printing, 2019(3): 184-189.
[23] LIU Xinyue, LIU Ji, LIU Shaoting, et al. Hydrogel machines[J]. Materials Today, 2020, 36: 102-124.
doi: 10.1016/j.mattod.2019.12.026
[1] 苏旭中, 梁巧敏, 王汇锋, 张娣, 崔益怀. 棉/生物基弹性聚酯纤维混纺针织物的服用性能[J]. 纺织学报, 2023, 44(05): 119-124.
[2] 尹昂, 丛洪莲. 经编单向导湿织物设计与结构优化[J]. 纺织学报, 2023, 44(04): 86-91.
[3] 王晨露, 马金星, 杨雅晴, 韩潇, 洪剑寒, 占海华, 杨施倩, 姚绍芳, 刘姜乔娜. 聚苯胺涂层经编织物的应变传感性能及其在呼吸监测中的应用[J]. 纺织学报, 2022, 43(08): 113-118.
[4] 邓中民, 胡灏东, 于东洋, 王文, 柯薇. 结合图像频域和空间域的纬编针织物密度检测方法[J]. 纺织学报, 2022, 43(08): 67-73.
[5] 钱娟, 谢婷, 张佩华, 付少举. 聚乙烯针织物的热湿舒适性能[J]. 纺织学报, 2022, 43(07): 60-66.
[6] 汝欣, 朱婉珍, 史伟民, 彭来湖. 密度非均匀分布纬编针织物的变形预测及仿真[J]. 纺织学报, 2022, 43(06): 63-69.
[7] 杨柳, 李羽佳, 张鑫, 何文婧, 童胜昊, 马磊, 张毅, 张瑞云. 色纺针织物紧密程度对颜色预测的影响[J]. 纺织学报, 2022, 43(05): 104-108.
[8] 虞茹芳, 洪兴华, 祝成炎, 金子敏, 万军民. 还原氧化石墨烯涂层织物的电加热性能[J]. 纺织学报, 2021, 42(10): 126-131.
[9] 陈可, 张娣, 吉宜军, 乐荣庆, 苏旭中. 精梳涤纶条含量对涤纶针织物性能的影响[J]. 纺织学报, 2021, 42(09): 66-69.
[10] 袁鲁宁, 王建萍, 张冰洁, 张宇婷, 姚晓凤. 动态调湿控温立体针织物拓扑优化设计[J]. 纺织学报, 2021, 42(09): 70-75.
[11] 闫涛, 潘志娟. 轻薄型取向碳纳米纤维膜的应变传感性能[J]. 纺织学报, 2021, 42(07): 62-68.
[12] 李一飞, 郑敏, 常朱宁子, 李丽艳, 曹元鸣, 翟旺宜. 二维过渡金属碳化物(Ti3C2Tx)对棉针织物的功能整理及其性能分析[J]. 纺织学报, 2021, 42(06): 120-127.
[13] 汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2021, 42(05): 168-177.
[14] 胡旭东, 宋炎锋, 汝欣, 彭来湖. 大小头筒状纬编针织物建模及其线圈长度逆向设计[J]. 纺织学报, 2021, 42(04): 80-84.
[15] 张陈恬, 赵连英, 顾学锋. 中空咖啡碳聚酯纤维/棉混纺纬平针织物的服用性能[J]. 纺织学报, 2021, 42(03): 102-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!