纺织学报 ›› 2023, Vol. 44 ›› Issue (07): 132-140.doi: 10.13475/j.fzxb.20220309801

• 纺织工程 • 上一篇    下一篇

玻璃纤维衬经衬纬纬编管状织物的制备及其拉伸性能

周濛濛, 蒋高明()   

  1. 江南大学 针织技术教育部工程研究中心, 江苏 无锡 214122
  • 收稿日期:2022-03-29 修回日期:2022-05-12 出版日期:2023-07-15 发布日期:2023-08-10
  • 通讯作者: 蒋高明(1962—),男,教授,博士。主要研究方向为功能针织面料与针织结构材料。E-mail:jgm@jiangnan.edu.cn
  • 作者简介:周濛濛(1996—),女,博士生。主要研究方向为针织复合材料。
  • 基金资助:
    泰山产业领军人才项目(20180224);江苏省研究生科研与实践创新计划项目(KYCX22_2353)

Preparation and tensile properties of glass fiber weft-knitted biaxial tubular fabrics

ZHOU Mengmeng, JIANG Gaoming()   

  1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2022-03-29 Revised:2022-05-12 Published:2023-07-15 Online:2023-08-10

摘要:

为获得结构稳定且紧密的玻璃纤维衬经衬纬纬编管状(WKBT)织物,探讨了机上及机下因地组织捆绑线圈织缩造成衬纱弯曲起拱的衬纱露丝问题。采用添纱工艺及扩布装置制备了4种地组织结构及捆绑纱种类不同的WKBT织物,并分析了其外观形貌、横纵密及拉伸性能。结果表明:添纱组织可改善脱圈后捆绑线圈周向的织缩,但衬纱起拱现象仍存在;扩布装置的应用解决了衬纱起拱的问题,结合添纱工艺可制备结构稳定且紧密的WKBT织物;4种WKBT织物经扩幅后衬纱仍具有较高的拉伸模量和衬纱强力利用率,证明本文方法在消除织缩的同时,可制备性能优异的WKBT织物。

关键词: 纬编衬经衬纬管状织物, 扩布装置, 织缩, 拉伸性能, 衬纱强力利用率

Abstract:

Objective Glass fiber is an important material for the preparation of tubular textile reinforcements because of its high strength, high modulus and high cost performance, but its brittleness, small fracture elongation and poor torsion resistance limit its textile processability. In order to obtain glass fiber weft-knitted biaxial tubular (WKBT) fabrics with stable and compact structure to meet industrial requirement for integrated tubular fabric formation with high strength, high modulus and low ductility, glass fiber WKBT fabric with warp and weft lining yarns constructed using 1×1 rib structure was designed and discussed, and the tensile properties of WKBT fabric were evaluated.

Method Four types of WKBT fabrics, i.e., PET1-GF-GF, PTFE-GF-GF, PE T 2 F B-PET1-GF-GF, and PTFEFB-PTFE-GF-GF, with different stitch structures and binding yarns were prepared by plaiting technology and spreading device, and their appearance morphology, transverse and longitudinal density and tensile properties were analyzed. The shrinkage was introduced to discuss the dimensional stability of WKBT fabric influenced by the stitch structure and the binding yarns. The strength efficiency of lining yarn was defined to describe the influence of different stitch structure and binding yarns on the strength efficiency of glass fiber.

Results According to the definition of "binding yarn-warp yarn-weft yarn", three types of WKBT fabrics were prepared by different binding yarn and insertion yarns, which were PET1-PET1-PET1、PET1-GF-GF、PTFE-GF-GF, respectively. The WKBT fabric was stretched in the 0° direction on the machine, and the diameter of the WKBT fabric was approximately equal to the diameter of the weft yarn along the circumferential direction of the fabric. Under the pulling force, the sinker loop transfer to leg causing loops to shrink and densely arranged along the circumferential direction, and the diameter of the WKBT fabric becomes smaller. The weft lining yarns were bent and arched on the front of the fabric under the shrinkage force of the adjacent binding loop, resulting in the phenomenon of "lining yarns buckling". "Plaiting yarn-binding yarn-warp yarn-weft yarn" was defined to describe the WKBT fabric, and the plaiting yarn on the front side of fabric (F), back side (B), and front and back (FB), respectively. Two WKBT fabrics were prepared, which are PE T 2 F B-PET1-GF-GF and PTFEFB-PTFE-GF-GF. The dimensional stability and appearance of fabric was improved by the plaiting yarn, but the buckling of lining yarns still existed. Compared to the 1+1 rib, the plaiting yarn prevented more effectively the shrinkage of fabric along the circumferential direction. The total shrinkage of the WKBT fabric was small, and the fabric was stable and compact. The weft lining yarns were straightened after the WKBT fabrics were spreading, the buckling of lining yarns decreased. The WKBT fabric was more compact which was bond by the PTFE fiber. The elasticity of PTFE fiber was smaller and the fabric shrank along the 0° direction after spreading. Compared with 1+1 rib structure, the longitudinal density of WKBT fabric increased which was bond by the plaiting structure and the fabric is more compacter. Four WKBT fabrics had good tensile properties, and the strength efficiency of warp lining yarn were 70.48%, 69.14%, 63.88% and 46.02%, respectively, and the strength efficiency of weft lining yarn were 70.50%, 81.40%, 84.68% and 62.09%, respectively. The structure and tightness of stitch structure were shown to be important factors affecting the elastic modulus of WKBT fabric.

Conclusion The plaiting stitch can prevent the circumferential shrinkage of the binding stitch structure, but there is still the lining yarns buckling. The buckling of lining yarns can be solved by using the spreading device. Combined with the plaiting technology, the WKBT fabric with stable and compact structure can be prepared. The lining yarns of the four WKBT fabrics still have high elastic modulus and strength efficiency, meaning that the WKBT fabrics with excellent performance can be prepared by plaiting technology and spreading device while eliminating shrinkage.

Key words: weft-knitted biaxial tubular fabric, spreading device, shrinkage, tensile property, strength efficiency of lining yarn

中图分类号: 

  • TS183.4

表1

纱线的性能参数"

纱线
名称
线密度/
tex
断裂强力/
N
断裂伸长率/
%
抗弯力/
mN
PET1 50.0 14.26 23.07 4.93
PET2 16.7 5.58 18.30 1.65
PTFE 55.5 8.58 11.45 22.69
GF 222.0 123.62 2.60 38.01

图1

WKBT织物结构及编织示意图"

图2

WKBT织物拉伸试样尺寸及形状"

图3

WKBT织物实物图"

表2

WKBT织物的横纵密与织缩率"

机上织物密度 机下织物密度 织缩率(24 h)/%
织物名称 地组织结构 N01/
(纵行·
(5 cm)-1)
N02/
(横列·
(5 cm)-1)
N11/
(纵行·
(5 cm)-1)
N12/
(横列·
(5 cm)-1)
M01 M02 M
PET1-PET1-PET1 19.7 29.5 39.8 30.6 50.50 3.59 52.28
PET1-GF-GF 1+1罗纹 19.7 33.9 39.2 37.5 49.74 9.60 54.57
PTFE-GF-GF 19.7 31.8 36.7 32.5 46.32 2.15 47.48
PE T 2 F B-PET1-GF-GF 1+1罗纹添纱 19.7 53.2 24.0 55.0 17.92 3.27 20.60
PTFEFB-PTFE-GF-GF 19.7 44.3 28.0 47.8 29.64 7.32 34.79

图4

添纱WKBT织物结构"

图5

添纱WKBT织物实物图"

图6

衬经衬纬圆纬机扩布装置示意图和实物图"

图7

扩幅后WKBT织物实物图"

表3

扩幅后WKBT织物的横纵密"

织物名称 机上织物密度 扩幅后织物密度
N01/
(纵行·
(5 cm)-1)
N02 /
(横列·
(5 cm)-1)
N11/
(纵行·
(5 cm)-1)
N12/
(横列·
(5 cm)-1)
PET1-GF-GF 19.7 33.9 20.8 44.0
PTFE-GF-GF 19.7 31.8 20.8 48.0
PE T 2 F B-PET1-
GF-GF
19.7 53.2 20.8 62.0
PTFEFB-PTFE-
GF-GF
19.7 44.3 20.8 86.0

表4

4种WKBT织物的基本性能"

织物名称 厚度/
mm
面密度/
(g·cm-2)
PET1-GF-GF 1.00±0.04 380.00±8.00
PTFE-GF-GF 0.84±0.03 416.50±6.50
PE T 2 F B-PET1-GF-GF 1.28±0.07 683.00±5.00
PTFEFB-PTFE-GF-GF 1.60±0.09 954.00±4.00

图8

WKBT织物的显微镜照片(×50)"

图9

载荷-位移曲线"

图10

WKBT织物纵向拉伸性能 注:1#—PET1-GF-GF;2#—PTFE-GF-GF;3#—PE T 2 F B-PET1-GF-GF;4#—PTFEFB-PTFE-GF-GF"

图11

WKBT织物横向拉伸性能 注:1#—PET1-GF-GF;2#—PTFE-GF-GF;3#—PE T 2 F B-PET1-GF-GF;4#—PTFEFB-PTFE-GF-GF。"

[1] 秦晓, 秦曦. 系列横机管状织物的设计与应用[J]. 毛纺科技, 2021, 49(5):15-19.
QIN Xiao, QIN Xi. Design and application of tubular fabric knitted by flat knitting machine[J]. Wool Textile Journal, 2021, 49(5):15-19.
[2] 陈曦, 缪旭红, 刘青, 等. 全成形Y形三通管织物编织工艺设计[J]. 纺织学报, 2021, 42(5):73-78.
CHEN Xi, MIAO Xuhong, LIU Qing, et al. Knitting process design of fully-fashioned Y-shaped three-way pipe fabrics[J]. Journal of Textile Research, 2021, 42(5):73-78.
[3] 周濛濛, 蒋高明, 高哲, 等. 纬编衬经衬纬管状织物增强复合材料研究进展[J]. 纺织学报, 2021, 42(7): 184-191.
ZHOU Mengmeng, JIANG Gaoming, GAO Zhe, et al. Research progress in weft-knitted biaxial tubular fabric reinforced composites[J]. Journal of Textile Research, 2021, 42(7): 184-191.
[4] 张艳明, 邱冠雄, 姜亚明. 纬编双轴向多层衬纱织物的几何结构[J]. 针织工业, 2005(4):11-14.
ZHANG Yanming, QIU Guanxiong, JIANG Yaming. Geometrical structure of multi-layered biaxial weft knitted fabrics[J]. Knitting Industries, 2005(4):11-14.
[5] 刘梁森, 邱冠雄, 姜亚明. 筒形纬编双轴向高强聚乙烯织物及其加工设备的研制[J]. 纺织学报, 2009, 30(7):129-134.
LIU Liangsen, QIU Guanxiong, JIANG Yaming. Biaxial circular weft knitted high performance polyethylene fabric and development of its producing equipment[J]. Journal of Textile Research, 2009, 30(7):129-134.
[6] 田菲. 针织筒状空气过滤材料结构与过滤性能研究[D]. 无锡: 江南大学, 2020:23-27.
TIAN Fei. Research on the structure and filter performance of knitted cylindrical air filter material[D]. Wuxi: Jiangnan University, 2020:23-27.
[7] 王震, 姜亚明, 刘良森, 等. 常用高性能纱线弯曲刚度的测量和表征[J]. 纺织学报, 2014, 35(5):30-33.
WANG Zhen, JIANG Yaming, LIU Liangsen, et al. Measurement and characterization of bending rigidity of common high-performance yarns[J]. Journal of Textile Research, 2014, 35(5):30-33.
[8] SAAD E M, GOWID S, CABIBIHAN J J. Rupture of an industrial GFRP composite mitered elbow pipe[J]. Polymers, 2021.DOI:10.3390/polym13091478.
doi: 10.3390/polym13091478
[9] AL-MAHFOOZ M J, MAHDI E. Bending behavior of glass fiber reinforced composite overwrapping PVC plastic pipes[J]. Composite Structures, 2020.DOI: 10.1016/j.compstruct.2020.112656.
doi: 10.1016/j.compstruct.2020.112656
[10] 赵兆. 玻纤捆绑纱多轴向经编碳纤维增强复合材料力学性能的研究[D]. 上海: 东华大学, 2012:12-16.
ZHAO Zhao. Study on mechanical properties of multi-axial carbon warp-knitted reinforced composite materials with glass-fiber binder yarn[D]. Shanghai: Donghua University, 2012:12-16.
[11] GAO X P, LI D X, WU W, et al. Experimental investigation of the tensile and bending behavior of multi-axial warp-knitted fabric composites[J]. Textile Research Journal, 2018, 88(3):333-344.
doi: 10.1177/0040517516679155
[12] 乔灿灿, 姜亚明, 齐业雄, 等. 冲击波在陶瓷增强纬编双轴向多层衬纱织物及机织物复合材料中传递的表征[J]. 纺织学报, 2021, 42(5):84-89.
QIAO Cancan, JIANG Yaming, QI Yexiong, et al. Characterization of shock wave propagation in ceramic reinforced weft-knitted biaxial multilayer yarnlining fabric and woven fabrics composites[J]. Journal of Textile Research, 2021, 42(5):84-89.
[13] 冒海文. 纬编双轴向无缝空气过滤材料制备与性能研究[D]. 无锡: 江南大学, 2020:24-30.
MAO Haiwen. Preparation and properties of the biaxial weft-knitted seamless air filter material[D]. Wuxi: Jiangnan University, 2020:24-30.
[14] ZHOU M M, JIANG G M, GAO Z. The tensile properties of weft-knitted biaxial tubular fabrics and reinforced composites[J]. Textile Research Journal, 2021, 92(9): 1611-a619.
doi: 10.1177/00405175211064805
[15] 敬凌霄, 何婷婷, 陈星安, 等. 涤纶多轴向经编织物拉伸性能研究[J]. 针织工业, 2017(12):58-60.
JING Lingxiao, HE Tingting, CHEN Xingan, et al. Study of tensile properties of multi-axial warp-knitted polyester fabrics[J]. Knitting Industries, 2017(12):58-60.
[1] 成悦, 左涵, 安琪, 李大伟, 张伟, 付译鋆. 非可吸收倒刺缝合线握持力及其影响因素[J]. 纺织学报, 2023, 44(06): 66-71.
[2] 陈小明, 任志鹏, 郑宏伟, 吴凯杰, 苏星兆, 陈利. 基于预/主刺协同的针刺织物力学性能提升方法[J]. 纺织学报, 2023, 44(04): 100-107.
[3] 孙晓伦, 陈利, 张一帆, 李默涵. 开孔三维机织复合材料的拉伸性能[J]. 纺织学报, 2022, 43(08): 74-79.
[4] 周濛濛, 蒋高明, 高哲, 郑培晓. 纬编衬经衬纬管状织物增强复合材料研究进展[J]. 纺织学报, 2021, 42(07): 184-191.
[5] 刘俊岭, 孙颖, 陈利. 含变异结构的三维机织复合材料的轴向拉伸性能[J]. 纺织学报, 2019, 40(12): 162-168.
[6] 王心淼, 陈利, 张典堂, 陈冬. 多层多向机织复合材料细观结构建模及其性能[J]. 纺织学报, 2019, 40(02): 45-52.
[7] 孙颖 刘俊岭 郑园园 陈利 李嘉禄. 碳/芳纶混编三维编织复合材料拉伸性能[J]. 纺织学报, 2018, 39(02): 49-54.
[8] 孟超然 毕雪蓉 李佳蔚 郁崇文. 丹蒽醌对氧化脱胶苎麻纤维理化性能的调控[J]. 纺织学报, 2018, 39(02): 78-85.
[9] 蔡冯杰 祝成炎 田伟 吕智宁 申晓. 3D打印成型的玻璃纤维增强聚乳酸基复合材料[J]. 纺织学报, 2017, 38(10): 13-18.
[10] 常玉萍 马丕波. 基于网眼结构的负泊松比经编间隔织物模型及其拉伸性能[J]. 纺织学报, 2017, 38(09): 59-65.
[11] 房家惠 于伟东. 阻燃涤纶/芳纶/聚苯丙噁唑纤维三轴系复合纱的拉伸性能[J]. 纺织学报, 2017, 38(06): 28-32.
[12] 郭囊括 李丽辉 代方银 陈杨 敬凌霄. 柔性多轴向经编聚氨酯涂层织物的拉伸性能[J]. 纺织学报, 2016, 37(11): 59-063.
[13] 刘东奇 王喆 王翔 尹翠玉 张宇峰. 甲醇蛋白改性粘胶纤维的结构与性能[J]. 纺织学报, 2016, 37(09): 12-15.
[14] 吴波伟 张毅 黄帅 张卢娟 张孟洋. 拼纱根数对空气层组织织物拉伸性能的影响[J]. 纺织学报, 2016, 37(05): 47-50.
[15] 陈美玉 来侃 孙润军 陈立成 王玉. 大麻/聚乳酸复合发泡材料的力学性能[J]. 纺织学报, 2016, 37(01): 28-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!