纺织学报 ›› 2023, Vol. 44 ›› Issue (11): 52-60.doi: 10.13475/j.fzxb.20220701701

• 纺织工程 • 上一篇    下一篇

新型气流牵伸通道结构模型的构建与性能分析

王青(), 梁高翔, 殷俊清, 盛晓超, 吕绪山, 党帅   

  1. 西安工程大学 机电工程学院, 陕西 西安 710048
  • 收稿日期:2022-07-07 修回日期:2023-06-28 出版日期:2023-11-15 发布日期:2023-12-25
  • 作者简介:王青(1985—),女,讲师,博士。主要研究方向为喷气织机主喷嘴、喷气涡流纺内流场分析和基于机器视觉的目标识别等。E-mail:qingkong1123@163.com
  • 基金资助:
    国家自然科学基金青年科学基金项目(52105584);陕西省重点研发计划项目(2022GY-307)

Establishment of novel model and performance analysis of airflow drafting channel

WANG Qing(), LIANG Gaoxiang, YIN Junqing, SHENG Xiaochao, LÜ Xushan, DANG Shuai   

  1. College of Mechanical and Electrical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • Received:2022-07-07 Revised:2023-06-28 Published:2023-11-15 Online:2023-12-25

摘要:

为提高牵伸比,缩短纺纱工艺流程,提出一种通过气流来实现对棉条牵伸的方法,即气流牵伸方法。建立了气流牵伸通道的结构模型,通过对气流牵伸通道中纤维与气流的双向耦合影响仿真分析,验证该方法的可行性。结果表明:纤维在气流牵伸通道中波动前进,且在接近或流出通道出口时,纤维再次变直;纤维在牵伸通道中加速前进,且在通道不同位置运动速度不同,其结果是纤维在牵伸通道向前运动过程中实现重新分布;弯钩纤维在牵伸通道中受到的气流牵引力大,因此移动得更快,且纤维的弯钩在向前运动过程中逐渐被拉直;在气流牵伸通道中,纤维经历了加速、重新分布和拉直等过程达到牵伸的目的,证实了气流牵伸方法的有效性。

关键词: 气流牵伸方法, 流固耦合, 数值模拟, 流场特性, 纤维运动规律, 纺纱技术

Abstract:

Objective In the spinning process, slivers need to be drafted for several times to achieve a certain fineness. At present, this process is mainly performed through the roller drafting mechanism. Due to the limitation of the deceleration ratio of transmission system, the velocity ratio of front and rear rollers is generally small, hence the slivers need to be drafted for several times to achieve the needed drafting ratio. In the process of drafting, the friction force between fibers changes dynamically and so does the drawing force. In order to solve the above problems, an airflow assisted drafting method is proposed, and the performance of such a system is modeled and simulated.

Method It was proposed that the sliver from the airflow drafting channel goes directly into the twisting channel of the air-jet vortex spinning machine. The drafting ratio was set to 140 according to the drafting ratio of roving frame and spinning frame. The outlet air velocity of airflow drafting channel was set to 420 m/s, according to the air-jet vortex spinning speed. The inlet air velocity of airflow drafting channel was calculated as 3 m/s. The model of the airflow drafting channel was established (Fig. 4). The fluid-solid coupling simulation platform was built based on ANSYS Workbench software, and the fluid-solid coupling effects of single straight fiber, two parallel straight fibers and a single hooked fiber were numerically simulated, respectively.

Results The motion trajectories of a single straight fiber, two parallel straight fibers and a single hooked fiber in the drafting channel were obtained by simulation (Fig. 12-14). The fiber was accelerated forward in the drafting channel, and its motion track was wavy (Fig. 12). Due to the large velocity gradient of the air in the drafting channel, the air velocity at the fiber head was higher than that at the fiber tail. As a result, the fiber straightens again when it flew out of drafting channel. When two straight parallel fibers moved in the drafting channel, they got close and eventually contacted each other (Fig. 13). Because of different air velocities at different positions in the drafting channel, the two fibers stagger with each other in the forward process. Compared with straight fibers, the single hooked fiber moved faster in the drafting channel, and the total moving time was greatly reduced (Fig. 14). At the same time, Because of the influence of the friction force of the air, the hooked fibers gradually extend straight during the forward motion.

Conclusion Through the analysis of the above results, these conclusions can be attained. Firstly, velocity gradient of the air in the drafting channel is large, which makes fibers accelerate forward and straighten again when they exit the drafting channel. Secondly, when multiple fibers move in the drafting channel, different fibers stagger forward by means of different air velocities at different positions. That is, the fibers are redistributed in the advancing process. Thirdly, in the process of movement, the hooked fibers will be gradually straightened due to the friction force of the air. So the purpose of straightening fibers is realized similar to that of roller drafting. Finally, Becaust of the boundary layer effect of the air, the air velocity close to the inner wall of the drafting channel is smaller than that in the center of the drafting channel, and the farther away from the center, the lower the air velocity, suggesting that the fibers tend to move close to the inner wall as they move forward. In summary, in the airflow drafting channel, fibers can be accelerated, redistributed and straightened, that is, the purpose of drafting can be achieved, verifying the effectiveness of the airflow drafting method.

Key words: airflow drafting method, fluid-solid coupling, numerical simulation, flow field characteristic, law of fiber motion, spinning technique

中图分类号: 

  • TS103.2

图1

拉瓦尔喷管示意图 A1为喷管入口截面积;Akr为喷管喉部截面积;A2为喷管出口截面积;ωkr为喷管喉部流速。"

图2

平行伸直纤维在气流中的受力"

图3

通道半径与长度关系曲线"

图4

牵伸通道模型示意图"

图5

通道中心线速度分布图"

图6

通道中心线压力分布图"

图7

速度等值线梯度图"

图8

不同状态下的纤维模型"

图9

计算区域示意图"

图10

流固耦合模型网格划分"

表1

纤维与流体的材料属性参数"

试样 密度/
(kg·m-3)
弹性模量/
Pa
泊松比 直径/
mm
黏度/
(kg·m-1·s-1)
纤维 1 540 8×109 0 0.1
空气 1.225 1.789 4×10-5

图11

流固耦合仿真流程图"

图12

单根直线型纤维模型运动规律"

图13

双根直线型纤维模型运动规律"

图14

单根弯钩型纤维模型运动规律"

[1] REN Jiazhi, FENG Qingguo, JIA Guoxin, et al. The on-line detection of drafting force of back zone on cotton spinning frame[J]. Advanced Materials Research, 2011,332-334: 520-525.
[2] QASIM Siddiqui, ZAMIR Abro, YU Chongwen. Study of drafting force variability and sliver irregularity at the break draft zone of a draw frame[J]. Textile Research Journal, 2015, 85(14): 1465-1473.
doi: 10.1177/0040517514563724
[3] LIN Qian, WILLAM Oxenham, YU Chongwen. A study of the drafting force in roller drafting and its influence on sliver irregularity[J]. Journal of The Textile Institute, 2011, 102(11): 994-1001.
doi: 10.1080/00405000.2010.529284
[4] ZHANG Zhiliang, YU Chongwen. Study on drafting force and sliver irregularity on drawing frame[J]. Journal of The Textile Institute, 2012, 103(3): 341-347.
[5] 刘璐, 李娟, 贺文慧, 等. 超大牵伸纺纱中的纤维牵伸力分析[J]. 上海纺织科技, 2018, 46(2): 4-6,24.
LIU Lu, LI Juan, HE Wenhui, et al. Analysis of drafting force of fiber in super high draft spinning[J]. Shanghai Textile Science & Technology, 2018, 46(2): 4-6,24.
[6] CHATTOPADHYAY R, RAINA Mohit. Fibre breakage during drafting on ring frame[J]. Journal of The Textile Institute, 2013, 104(12): 1353-1358.
doi: 10.1080/00405000.2013.806048
[7] 焉瑞安, 崔后祥, 王新厚. 成纱牵伸中纤维长度损伤的研究[J]. 棉纺织技术, 2020, 48(10): 24-27.
YAN Rui'an, CUI Houxiang, WANG Xinhou. Research on the fiber length damage during yarn drafting[J]. Cotton Textile Technology, 2020, 48(10): 24-27.
[8] 钱怡. 气流引纬流场的数值模拟与优化设计[D]. 上海: 东华大学, 2017: 19-29.
QIAN Yi. Numerical simulation and optimization of weft insertion flow field of air-jet loom[D]. Shanghai: Donghua University, 2017: 19-29.
[9] KIM Jin Hyeon, SETOGUCHI Toshiaki, KIM Heuy Dong. Numerical study of sub-nozzle flows for the weft transmission in an air jet loom[J]. Procedia Engineering, 2015(105): 264-269.
[10] WU Zhenyu, CHEN Shenyang, LIU Yishen, et al. Air-flow characteristics and yarn whipping during start-up stage of air-jet weft insertion[J]. Textile Research Journal, 2016, 86(18): 1988-1999.
doi: 10.1177/0040517515619351
[11] 胡科桥. 气流引纬过程中纱线运动模型仿真及实验研究[D]. 杭州: 浙江理工大学, 2013: 24-46.
HU Keqiao. Simulation and experimental investigation of the dynamic yarn behavior during weft insertion[D]. Hangzhou: Zhejiang Sci-Tech University, 2013: 24-46.
[12] 张风君. 流体牵引轴向运动纤维(束)的动态特性研究[D]. 苏州: 苏州大学, 2018: 41-62.
ZHANG Fengjun. Research movement characteristics of axial release filament (bundle) subjected to fluid traction[D]. Suzhou: Soochow University, 2018: 41-62.
[13] 邹专勇, 俞建勇, 薛文良, 等. 解析法评价旋转气流对喷气涡流纱的加捻强度[J]. 纺织学报, 2008, 29(5): 19-21.
ZOU Zhuanyong, YU Jianyong, XUE Wenliang, et al. Evaluating the strength of the vortex twist acting on the yarn in air jet vortex spinning[J]. Journal of Textile Research, 2008, 29(5): 19-21.
[14] 郑凌晨. 喷气涡流纺加捻器内气流场及纤维模型研究[D]. 杭州: 浙江理工大学, 2015: 21-43.
ZHENG Lingchen. Researching of airflow in twisting machine of vortex spinning and researching of fiber model[D]. Hangzhou: Zhejiang Sci-Tech University, 2015: 21-43.
[15] 陈洪立, 李炯, 金玉珍, 等. 空心锭结构参数对喷气涡流纺内流场的影响[J]. 纺织学报, 2017, 38(12): 135-140.
CHEN Hongli, LI Jiong, JIN Yuzhen, et al. Influence of hollow spindle structure parameters on flow field of air jet vortex spinning[J]. Journal of Textile Research, 2017, 38(12): 135-140.
doi: 10.1177/004051756803800205
[16] 尚珊珊, 余子开, 郁崇文, 等. 喷气涡流纺旋转气流场及纱体运动的数值模拟[J]. 东华大学学报(自然科学版), 2019, 45(5): 665-674.
SHANG Shanshan, YU Zikai, YU Chongwen, et al. Numerical simulation of swirling airflow field and yarn motion in vortex spinning[J]. Journal of Donghua University (Natural Science), 2019, 45(5): 665-674.
[17] 陈美玉, 刘玉琳, 胡革明, 等. 涡流纺纱线的包缠加捻对其力学性能的影响[J]. 纺织学报, 2021, 42(1): 59-66.
CHEN Meiyu, LIU Yulin, HU Geming, et al. Effect of wrapping and twisting on mechanical properties of air-jet vortex spun yarns[J]. Journal of Textile Research, 2021, 42(1): 59-66.
[18] 郭臻. 基于气流成纱机理的新型纺纱核心技术研究[D]. 天津: 天津工业大学, 2019: 11-54.
GUO Zhen. Research on the new core spinning technology based on airflow forming mechanism[D]. Tianjin:Tiangong University, 2019: 11-54.
[19] 郭臻, 李新荣, 卜兆宁, 等. 喷气涡流纺中纤维运动的三维数值模拟[J]. 纺织学报, 2019, 40(5):131-135.
GUO Zhen, LI Xinrong, BU Zhaoning, et al. Three-dimensional numerical simulation of fiber movement in nozzle of murata vortex spinning[J]. Journal of Textile Research, 2019, 40(5): 131-135.
[20] 裴泽光. 喷气涡流纺纤维与气流耦合作用特性及应用研究[D]. 上海: 东华大学, 2011: 41-42.
PEI Zeguang. Study on the characteristics and application of the fiber-airflow interaction in vortex spinning[D]. Shanghai: Donghua University, 2011: 41-42.
[21] SADYKOVA F Kh. The poisson ratio of textile fibers and yarns[J]. Fibre Chemistry, 1972, 3(2): 180-183.
doi: 10.1007/BF00547341
[1] 杨孟想, 刘让同, 李亮, 刘淑萍, 李淑静. 机织物的热传递与强热条件下热防护性能[J]. 纺织学报, 2023, 44(11): 74-82.
[2] 高艺华, 钱付平, 王晓维, 汪虎明, 高杰, 陆彪, 韩云龙. 纺织车间定向均流送风口结构设计及其送风性能[J]. 纺织学报, 2023, 44(08): 189-196.
[3] 李龙, 张弦, 吴磊. 导电纱线制备方法与应用的研究进展[J]. 纺织学报, 2023, 44(07): 214-221.
[4] 连力平, 杨鹏程, 余子健, 龙阳昭, 肖渊. 织物表面激光打标工艺参数的数值模拟及选取方法[J]. 纺织学报, 2023, 44(06): 121-128.
[5] 樊百林, 张昌睿, 郭佳华, 黄钢汉, 尉国梁. 基于Flow Simulation的喷气织机辅助喷嘴喷孔结构优化[J]. 纺织学报, 2023, 44(06): 200-206.
[6] 缪莹, 熊诗嫚, 郑敏博, 唐建东, 张慧霞, 丁彩玲, 夏治刚. 高光洁处理对聚酰亚胺短纤纱及其织物性能的影响[J]. 纺织学报, 2023, 44(02): 118-127.
[7] 孙戬, 姜博艺, 张守京, 胡胜. 异纤分拣机剔除喷管结构参数对其性能的影响[J]. 纺织学报, 2022, 43(10): 169-175.
[8] 诸文旎, 徐润楠, 胡蝶飞, 姚菊明, MILITKY Jiri, KREMENAKOVA Dana, 祝国成. 基于随机算法的纤维材料过滤特性仿真分析[J]. 纺织学报, 2022, 43(09): 76-81.
[9] 牛雪娟, 徐妍慧. 不同流通间隙排布条件下碳纤维束展纤行为研究[J]. 纺织学报, 2022, 43(06): 165-170.
[10] 余玉坤, 孙玥, 侯珏, 刘正, 易洁伦. 单层服装间隙量的动态有限元模型构建与仿真[J]. 纺织学报, 2022, 43(04): 124-132.
[11] 刘宜胜, 周鑫磊, 刘丹丹. 气动折入边装置中纱线初始位置对折边效果的影响[J]. 纺织学报, 2022, 43(03): 168-175.
[12] 钱淼, 胡恒蝶, 向忠, 马成章, 胡旭东. 非均布热管换热器的流动及其传热性能[J]. 纺织学报, 2021, 42(12): 151-158.
[13] 周浩邦, 沈敏, 余联庆, 肖世超. 辅助喷嘴结构对喷气织机异形筘内合成流场特征的影响[J]. 纺织学报, 2021, 42(11): 166-172.
[14] 牟浩蕾, 解江, 裴惠, 冯振宇, 耿宏章. 芳纶织物及其包容环的弹道冲击与数值模拟[J]. 纺织学报, 2021, 42(11): 56-63.
[15] 王玉栋, 姬长春, 王新厚, 高晓平. 新型熔喷气流模头的设计与数值分析[J]. 纺织学报, 2021, 42(07): 95-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!