纺织学报 ›› 2025, Vol. 46 ›› Issue (04): 146-153.doi: 10.13475/j.fzxb.20240406501

• 染整工程 • 上一篇    下一篇

壳聚糖改性的炭黑导电织物制备及其在人体运动监测中的应用

董子靖1,2(), 吴欣媛1,2, 王瑞霞1,2, 赵华祥3, 钱利江3, 应城唯3, 孙润军1,2   

  1. 1.西安工程大学 纺织科学与工程学院, 陕西 西安 710048
    2.西安工程大学 功能性纺织材料及制品教育部重点实验室, 陕西 西安 710048
    3.浙江绍兴永利印染有限公司, 浙江 绍兴 312073
  • 收稿日期:2024-04-25 修回日期:2024-08-14 出版日期:2025-04-15 发布日期:2025-06-11
  • 作者简介:董子靖(1990—),女,副教授,博士。主要研究方向为功能性复合纺织品研发。E-mail:dongzijing@xpu.edu.cn
  • 基金资助:
    生物基材料与绿色造纸国家重点实验室开放基金资助项目(GZKF202340);陕西省自然科学基础研究计划资助项目(2021JQ-691);陕西省教育厅科研计划项目(24JK0432);西安市科技计划项目(24GXFW0100);中国纺织工业联合会科技指导性计划项目(2022041);西安工程大学博士科研启动基金项目(BS201831)

Preparation and application of chitosan-modified conductive fabrics in human posture monitoring

DONG Zijing1,2(), WU Xinyuan1,2, WANG Ruixia1,2, ZHAO Huaxiang3, QIAN Lijiang3, YING Chengwei3, SUN Runjun1,2   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Key Laboratory of Functional Textile Material and Product (Xi'an Polytechnic University), Ministry of Education, Xi'an, Shaanxi 710048, China
    3. Zhejiang Shaoxing Yongli Printing and Dyeing Co., Ltd., Shaoxing, Zhejiang 312073, China
  • Received:2024-04-25 Revised:2024-08-14 Published:2025-04-15 Online:2025-06-11

摘要: 为改善炭黑(CB)导电层与织物基底的结合牢度和均匀性,提高炭黑导电织物作为传感器的灵敏度,采用浸渍法获得壳聚糖改性的炭黑导电纯棉针织物,通过改善碳系导电填充材料在织物上的均匀度,提高织物应变传感器的灵敏度,从而开发一种可监测人体运动的柔性应变传感器。使用扫描电子显微镜、傅里叶红外光谱仪分析其表面形貌和结构,采用ZH-T0型电阻测量模块结合织物强力机,测试样品拉伸应变灵敏度和稳定性。结果表明:与未使用壳聚糖改性的炭黑导电织物相比,壳聚糖对于织物的改性处理可使炭黑更均匀地包覆在织物上,赋予纯棉针织物良好的传感性能;在60%的应变条件下,电阻变化率达到332.37%,灵敏度为5.5左右,相对于未改性样品的电阻变化率提高了183.3%,灵敏度提高了175%;改性后的样品在不同频率、拉伸百分比和1 000次往复拉伸中其拉伸应变性能保持稳定,在宽温度范围内可稳定使用。壳聚糖修饰的炭黑导电织物可用于监测人身体多个部位的运动状态,并且具有良好的重复性。

关键词: 炭黑, 壳聚糖, 导电织物, 拉伸应变性能, 人体运动监测, 织物传感器

Abstract:

Objective In the actual application process, it is found that the carbon material is easy to agitate on the surface of the fabrics, resulting in the uneven coating of the material on the surface of the fabrics, affecting the sensing performance of the flexible sensor, and greatly limiting the application of such materials. The purpose of this study is to improve the uniformity of carbon conductive filling material on fabrics, improve the sensitivity of strain sensor and develop a sensor for detecting human movement.

Method Carbon black(CB) conductive knitted fabrics modified by chitosan was prepared by an impregnation method using pure cotton knitted fabrics as matrix material. The surface morphology and structure of the samples were analyzed by a scanning electron microscope and Fourier infrared spectroscopy. The tensile strain sensitivity and stability of the samples were measured by a ZH-T0 8-channel resistance measurement module combined with fabrics strength machine.

Results By Fourier infrared spectroscopy and scanning electron microscopy testing of the prepared conductive fabric, it can be observed that CB has been deposited on the fabric, and the CS modified material is uniformly deposited. According to the stress-strain curves of the fabric and the conductive fabric during the tensile process, it can be seen that the sample PCKF/CS/CB-4.0 has good mechanical properties. According to the strain-resistance curve of the fabric, the resistance change of the sample PCKF/CS/CB-4.0 can reach 332.37%, and the sensitivity can reach 5.5. Through the stability test of the fabric, it has good resilience and good repeatability. Finally, the application test can meet the needs of human motion monitoring.

Conclusion On the basis of chitosan modified pure cotton knitted fabric, chitosan modified carbon black conductive knitted fabric was prepared. When the modified carbon black content is 4.0%, the maximum resistance change rate of the sample can reach 332.37%, and the sensitivity is 5.5, which is 183.3% and 175% higher than that of the unmodified carbon black at the same concentration. The resistance and resistance change rate of PCKF/CS/CB-4.0 at different temperatures are tested, and the results show that PCKF/CS/CB-4.0 can be used stably over a wide temperature range. Through the stability test of PCKF/CS/CB-4.0, it can be concluded that the conductive fabric not only has good sensitivity, but also has good repeatability and stability. The prepared chitosan modified carbon black pure cotton knitted fabric can be used as a sensor to monitor human motion.

Key words: carbon black, chitosan, conductive fabric, tensile strain property, human posture monitoring, fabric sensor

中图分类号: 

  • TS111.8

表1

样品命名以及部分实验参数"

样品编号 是否经过壳
聚糖(CS)
改性
是否经过
炭黑(CB)
整理
炭黑(CB)分
散液质
量分数/%
PCKF
PCKF/CS
PCKF/CB
PCKF/CB-1.0 1.0
PCKF/CB-2.0 2.0
PCKF/CB-3.0 3.0
PCKF/CB-4.0 4.0
PCKF/CS/CB
PCKF/CS/CB-0.5 0.5
PCKF/CS/CB-1.0 1.0
PCKF/CS/CB-2.0 2.0
PCKF/CS/CB-3.0 3.0
PCKF/CS/CB-4.0 4.0

图1

PCKF和PCKF/CS/CB-4.0的红外光谱图"

图2

样品PCKF/CS/CB-4.0和PCKF/CB的SEM照片"

图3

织物的应力-应变曲线与循环拉伸曲线"

图4

样品的应变-电阻变化曲线"

图5

裂缝产生的示意图"

图6

不同温度下PCKF/CS/CB-4.0的电阻和电阻变化率及测试示意图"

图7

PCKF/CS/CB-4.0的快速响应时间和回复时间"

图8

PCKF/CS/CB-4.0在不同频率下的循环拉伸测试结果"

图9

PCKF/CS/CB-4.0在不同拉伸百分比下的循环拉伸测试结果"

图10

PCKF/CS/CB-4.0循环拉伸1 000次下的电阻变化率"

图11

手指与膝盖不同弯曲角度时应变传感器的电阻变化率"

[1] LV J C, ZENG L, ZHANG L, et al. Multifunctional polypyrrole and rose-like silver flower-decorated e-textile with outstanding pressure/strain sensing and energy storage performance[J]. Chemical Engineering Journal, 2021, 23(6): 5-11.
[2] 汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2021, 42(5): 168-177.
TANG Jian, YAN Tan, PAN Zhijuan, et al. Research progress of flexible strain sensorsbased on conductive composite fibers[J]. Journal of Textilarch, 2021, 42(5): 168-177.
[3] LONG Q, XING T, et al. A highly sensitive and flexible capacitive pressure sensor based on a micro- arrayed polydimethylsiloxane dielectric layer[J]. Journal of Materials Chemistry C, 2023, 15(2): 11-14.
[4] WANG J, LU C, ZHANG K. Textile-based strain sensor for human motion detection[J]. Energy & Environmental Materials, 2020, 3(1): 226-238.
[5] CHOI C, LEE J M, KIM S H, et al. Twistable and stretchable sandwich structured fiber for wearable sensors and supercapacitors[J]. Nano Letters, 2016, 16(12): 323-348.
[6] 王晓雷, 缪旭红, 李煜天, 等. 导电纱线在针织柔性应变传感器上的应用进展[J]. 毛纺科技, 2019, 47(3): 81-84.
WANG Xiaolei, LIAO Xuhong, LI Yutian, et al. Progress in application of conductive yarns to knitted flexible strain sensors[J]. Wool Textile Journal, 2019, 47(3):81-84.
[7] 张华, 龚天巡, 黄文, 等. 基于石墨烯复合材料的柔性应力传感器制备及力电特性[J]. 电子元件与材料, 2018, 37(319): 34-38.
ZHANG Hua, GONG Tianxun, HUANG Wen, et al. Preparation and application of flexible strain sensor based on graphene composites[J]. Electronic Compoents and Materials, 2018, 37(319): 34-38.
[8] ZANG Y, ZANG Y P. Advances of flexible pressure sensors toward artificial intelligence and health care applications[J]. Materials Horizons, 2015, 2: 140-156.
[9] DORNISH M, KAPLAN D, S. Standards and guidelines for biopolymers in tissue-engineered medical products: ASTM alginate and chitosan standard guides[J]. Annals of the New York Academy of Sciences, 2001, 944: 7-12.
[10] MA L, GAO C, MAO Z, et al. Collagen chitosan porous scaffolds with improved biostability for skin tissue engineering[J]. Biomaterials, 2003, 24(26): 3-12.
[11] 伏广伟, 贺显伟. 导电纤维与纺织品及其抗静电性能测试[J]. 纺织导报, 2007(6): 112-114.
FU Guangwei, HE Xianwei. Conductive fibers and textiles and their antistatic properties test[J]. China Textile Leader, 2007(6): 112-114.
[12] SUH J K, SCHERPIN S, MARDI T. Basic science of articular cartilage injury and repair[J]. Operative Techniques in Sports Medicine, 1995, 3(2): 78-86.
[13] OSKOUYI A B, SUNDARARAJ U, MERTINY PT. Conductivity and piezoresistivity of composites containing randomly dispersed conductive nano-platelets[J]. Multidisciplinary Digital Publishing Institute, 2014(4): 383-391.
[14] HSHIEH F Y, BEESON H D. Flammability testing of pure and flame retardant-treated cotton fabrics[J]. Fire & Materials, 1995, 19(5): 233-239.
[15] SHEN M Y, KUAN C F, KUAN H C, et al. Preparation, characterization, thermal nd flame-retardant properties of green silicon-containing epoxy/functionalized graphene nanosheets composites[J]. Journal of Nanomaterials, 2013(4-8): 363-371.
[16] XIA L, LV Y, MIAO Z, et al. A flame retardant fabric nanocoating based on nanocarbon black particles@polymer composite and its fire-alarm application[J]. Chemical Engineering Journal, 2022. DOI.10.1016/j.cej.2021.133501.
[17] 贾俊楠, 卢少微, 汪英, 等. 基于壳聚糖修饰的聚氨酯导电织物制备与应变传感性能[J]. 电子元件与材料, 2023, 42(3): 303-308.
JIA Junnan, LU Shaowei, WANG Ying, et al. Preparation and strain sensing properties of chitosan modified polyurethane conductive fabric[J]. Electronic Components and Materials, 2023, 42(3): 303-308.
[18] XIA P, ZHANG K, FANG J, et al. A novel fabrication of open porouspoly-(γ-benzyl-l-glutamate) microcarriers with large pore size to promote cellular infiltration and proliferation[J]. Materials Letters, 2017, 206: 136-139.
[19] 刘逸新. 基于纤维集合体结构柔性应变传感器的构筑及其性能研究[D]. 杭州: 浙江理工大学, 2021, 85-98.
LIU Yixin. Study on the construction and performance of flexible strain sensor based on fiber assemblies structure[D]. Hangzhou: Zhejiang Sci-Tech University, 2021: 85-98.
[20] 张岑岑, 解敬文. 有机碳黑复合导电纤维混纺面料的设计[J]. 河南工程学院学报, 2021, 33(1): 3-4.
ZHANG Qinqin, XIE Jingwen. Design of organic carbon black composite conductive fiber blended fabric[J]. Journal of HENAN University of Engineering, 2021, 33(1): 3-4.
[21] 邵怡沁, 魏佳博, 宋倩倩, 等. 石墨烯柔性导电针织物双向传感性能[J]. 纺织高校基础科学学报, 2022, 35(4): 61-67.
SHAO Yiqin, WEI Jiabo, SONG Qianqian, et al. Bidirectiona lsensing properties of graphene flexible conductive knitted fabric[J]. Basic Scientics Journal of Textile Universities, 2022, 35(4): 61-67.
[22] LIN M, ZHENG Z, YANG L, et al. A High-performance, sensitive wearable multifunctional sensor based on rubber/CNT for human motion and skin temperature detection[J]. Advanced Materials, 2022, 34(1): 210-229.
[23] ATALAY O, KENNON W R, DEMIROK E. Weft-knitted strain sensor for monitoring respiratory rate and its electro-mechanical modeling[J]. Sensors Journal IEEE, 2015, 15(1): 110-122.
[24] XUE P, TAO X M, TSAN H Y. In situ SEM studies on strain sensing mechanisms of ppy-coated electrically conducting fabrics[J]. Applied Surface Science, 2007, 253(7): 3387-3392.
[25] ZHU G, WANG F, CHEN L, et al. Highly flexible TPU/SWCNTs composite-based temperature sensors with linear negative temperature coefficient effect and photo-thermal effect[J]. Composites Science and Technology, 2022. DOI.10.1016/j.compscitech.2021.109133.
[1] 曹展瑞, 纪灿灿, 赫羴姗, 周丰, 向阳, 高飞, 刘轲, 王栋. 阴离子交换型乙烯-乙烯醇共聚物纳米纤维气凝胶蛋白分离材料[J]. 纺织学报, 2025, 46(04): 29-37.
[2] 岳欣琰, 邵剑波, 王小虎, 韩潇, 赵晓曼, 洪剑寒. 基于镀银锦纶/锦纶/水性聚氨酯复合纱的一维结构柔性电容传感器[J]. 纺织学报, 2025, 46(03): 82-89.
[3] 刘延波, 高鑫羽, 郝铭, 胡晓东, 杨波. 基于光热改性的复合纤维毡及其在高黏度油吸附中的应用[J]. 纺织学报, 2024, 45(11): 55-64.
[4] 房磊, 刘秀明, 贾娇娇, 蔺志浩, 任燕飞, 侯凯文, 巩继贤, 扈延龄. 高分子量壳聚糖皮芯结构微纳米纤维膜制备[J]. 纺织学报, 2024, 45(09): 1-9.
[5] 卢道坤, 王仕飞, 董倩, 史纳蔓, 李思琦, 干露露, 周爽, 沙莎, 张如全, 罗磊. 基于MXene的导电织物构筑及其多功能应用[J]. 纺织学报, 2024, 45(09): 137-145.
[6] 吕子豪, 徐慧慧, 袁小红, 王清清, 魏取福. 光动力抗菌水刺棉的染整一体化制备及其性能[J]. 纺织学报, 2024, 45(08): 26-34.
[7] 王玉玺, 唐春霞, 张丽平, 付少海. 纳米炭黑的Steglich酯化反应制备及乙二醇分散性[J]. 纺织学报, 2024, 45(07): 104-111.
[8] 陈锦苗, 李纪伟, 陈萌, 宁新, 崔爱华, 王娜. 壳聚糖微纳米纤维复合抗菌空气滤材的制备及其性能[J]. 纺织学报, 2024, 45(05): 19-26.
[9] 冯颖, 于汉哲, 张宏, 李可心, 马标, 董鑫, 张建伟. 静电纺壳聚糖基纳米纤维的制备及其在水处理中应用研究进展[J]. 纺织学报, 2024, 45(05): 218-227.
[10] 陈莹, 沈娜弟, 张露. 全纤维电容式传感器的结构设计及其性能[J]. 纺织学报, 2024, 45(05): 43-50.
[11] 胡自强, 骆晓蕾, 魏璐琳, 刘琳. 植酸/壳聚糖对涤纶/棉混纺织物的协同阻燃整理[J]. 纺织学报, 2024, 45(04): 126-135.
[12] 李丽丽, 袁亮, 唐雨霞, 杨文菊, 王浩. 聚多巴胺/壳聚糖改性棉织物的茶色素染色及其抗菌和防紫外线性能[J]. 纺织学报, 2024, 45(03): 106-113.
[13] 李曼丽, 季志浩, 龙柱, 王益峰, 金恩琪. 壳聚糖荧光防伪印花涂料的制备及其应用性能[J]. 纺织学报, 2024, 45(03): 114-121.
[14] 李平, 朱平, 刘云. 壳聚糖基膨胀阻燃涤纶/棉混纺织物的制备及其性能[J]. 纺织学报, 2024, 45(02): 162-170.
[15] 肖昊, 孙辉, 于斌, 朱祥祥, 杨潇东. 壳聚糖-SiO2气凝胶/纤维素/聚丙烯复合水刺材料的制备及其吸附染料性能[J]. 纺织学报, 2024, 45(02): 179-188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!