纺织学报 ›› 2025, Vol. 46 ›› Issue (06): 212-222.doi: 10.13475/j.fzxb.20240606801

• 机械与设备 • 上一篇    下一篇

面向卷绕机装配车间的无线信号聚类分层定位方法

丁司懿1,2,3,4(), 童辉辉5, 毛新华4, 张洁1,2,3   

  1. 1.东华大学 人工智能研究院, 上海 201620
    2.东华大学 纺织工业人工智能技术教育部工程研究中心, 上海 201620
    3.上海工业大数据与智能系统工程技术研究中心, 上海 201620
    4.北京中丽制机工程技术有限公司, 北京 101111
    5.东华大学 信息科学与技术学院, 上海 201620
  • 收稿日期:2024-06-28 修回日期:2024-11-22 出版日期:2025-06-15 发布日期:2025-07-02
  • 作者简介:丁司懿(1986—),男,副教授,博士。主要研究方向为智能制造。E-mail:dingsiy@dhu.edu.cn
  • 基金资助:
    国家自然科学基金项目(52105509);中央高校基本科研业务费专项资金资助项目(2232023D-25);中央高校基本科研业务费专项资金资助项目(2232024G-14);北京市博士后工作经费资助项目(京人社(2017)99号);上海市科技计划项目(20DZ2251400)

Hierarchical positioning method for wireless signal clustering in winding machine assembly workshops

DING Siyi1,2,3,4(), TONG Huihui5, MAO Xinhua4, ZHANG Jie1,2,3   

  1. 1. Institute of Artificial Intelligence, Donghua University, Shanghai 201620, China
    2. Engineering Research Center of Artificial Intelligence for Textile Industry, Ministry of Education, Donghua University, Shanghai 201620, China
    3. Shanghai Engineering Research Center of Industrial Big Data and Intelligent System, Shanghai 201620, China
    4. Beijing Chonglee Machinery Engineering Co., Ltd., Beijing 101111, China
    5. College of Information Science and Technology, Donghua University, Shanghai 201620, China
  • Received:2024-06-28 Revised:2024-11-22 Published:2025-06-15 Online:2025-07-02

摘要:

为解决卷绕机装配车间这种复杂环境中难以高效准确定位的问题,提出了基于无线网络(WiFi)的分层定位方法。通过分析装配车间无线网络环境的特点及其特定的定位需求,并结合卷绕机装配车间内的无线网络定位的特点,开发了一种结合XGBoost分类模型算法、K-means聚类算法和加权K最近邻(WKNN)算法的无线网络分层定位方法。同时,依据装配车间的特点与需求对定位区域进行有效划分并初步构建指纹库,根据装配车间内WiFi信号的特点,使用K-means聚类算法分割并更新指纹库;然后利用XGBoost分类模型算法确定子区域实现粗定位,再用WKNN算法精确定位。实验结果表明:该方法在定位精度上比传统WKNN算法提高了143.82%,平均定位时间减少了约20%;这些改进有效提升了卷绕机装配车间中无线网络定位的准确性和效率。

关键词: 卷绕机装配车间, 无线网络, 分层定位方法, XGBoost分类模型, K-means聚类算法, 加权K最近邻算法

Abstract:

Objective The objective of this research is to develop an efficient and accurate positioning method tailored for the complex environment of winding machine assembly workshops. These workshops present unique challenges due to their large size, intricate layouts, and the high precision required for the accurate placement and movement of materials and equipment. Effective positioning is crucial for optimizing production processes, improving resource allocation, and reducing operational costs. Traditional positioning methods have certain limitations: for instance, global positioning system has low positioning accuracy in indoor environments, while other methods (such as infrared or ultra-wideband (UWB)) can provide higher precision but are costly to deploy and complex to maintain. Therefore, this study selects wireless networks(WiFi) as the foundational positioning technology, as its signals are widely distributed in indoor environments, possess strong penetration capabilities, and offer a more cost-effective and deployable solution compared to other approaches. This research aims to develop a hierarchical positioning method based on WiFi to meet the specific needs of winding machine assembly workshops.

Method The proposed method integrates three key algorithms, i.e., the XGBoost classification model, the K-means clustering algorithm, and the weighted K-nearest neighbors (WKNN) algorithm. The methodology is divided into several stages. ① Analysis of wireless network environment. A thorough analysis of the wireless network environment in the assembly workshop is conducted to understand its characteristics and specific positioning requirements. ② Initial fingerprint database construction. The workshop is divided into functional areas, such as assembly, testing, and processing zones. Reference points are strategically placed throughout these areas, and the received signal strength indicator (RSSI) values are collected to create an initial fingerprint database. ③ Clustering and database refinement: K-means clustering is used to segment the fingerprint database into smaller, more manageable clusters. This step ensures that the RSSI data within each cluster are more homogeneous, improving the accuracy of subsequent localization steps. ④ Model training. The XGBoost classification model is trained using the refined fingerprint database. This model is responsible for coarse localization, identifying the sub-region where the target is located. ⑤ Fine localization. Within the identified sub-region, the WKNN algorithm is applied to achieve precise positioning. This two-tiered approach, combining coarse and fine localization, enhances both the accuracy and efficiency of the positioning process.

Results The proposed hierarchical WiFi positioning method was evaluated in a simulated workshop environment. The experimental results demonstrate significant improvements in both positioning accuracy and efficiency compared to traditional methods. Specifically, the method achieves a 143.82% improvement in positioning accuracy over conventional WKNN algorithms, with the average positioning error reduced to 0.89 m. Additionally, the average positioning time is shortened to 2.76 ms. Detailed performance metrics, including average positioning errors and cumulative distribution functions (CDF) for various algorithms, highlight the advantages of the proposed method. For instance, when positioning error thresholds are set at 3 m, the proposed method achieves a 100% success rate, significantly outperforming other methods such as RF and unclustered hierarchical algorithms. These results underscore the method's effectiveness in complex and dynamic workshop environments.

Conclusion This study introduces a novel WiFi-based hierarchical positioning algorithm specifically designed for the winding machine assembly workshop environment. By integrating XGBoost, K-means, and WKNN algorithms, the proposed method significantly enhances positioning accuracy and system performance. The hierarchical approach not only improves precision but also reduces the computational load, making real-time positioning feasible in large-scale industrial settings. The improvements in positioning precision and efficiency are particularly beneficial for industrial applications, where accurate and timely location data are critical for optimizing operations and ensuring safety. Future research should focus on testing the algorithm in more varied and complex real-world environments to further validate its robustness. Additionally, strategies to mitigate the impact of environmental changes on positioning accuracy should be explored. A comprehensive cost-benefit analysis of implementing this system in actual industrial settings would also provide valuable insights for practical deployment. Overall, this research contributes to the advancement of wireless network positioning technologies, offering a practical and efficient solution for the challenges faced in winding machine assembly workshops. The proposed method aligns with the goals of Industry 4.0, supporting the transition towards smarter, more automated manufacturing processes.

Key words: winding machine assembly workshop, wireless network, hierarchical positioning method, XGBoost classification model, K-means clustering algorithm, weighted K-nearest neighbors algorithm

中图分类号: 

  • TN99

图1

卷绕机装配车间内部结构平面图"

图2

基于XGBoost-WKNN的无线网络聚类分层定位方法流程"

图3

实验场景平面图"

表1

XGBoost取值范围"

组别 参数名称 取值范围
第1组 n_estimators [5~200]
第2组 max_depth [1~5]
min_child_weight [1~10]
第3组 gamma [0.05~0.6]
第4组 subsample [0.6~1]
colsample_bytree [0.6~1]
第5组 alpha [0.01~3]
lambda [0.05~4]
第6组 learning_rate [0.01~0.4]

图4

n_estimators的训练结果"

表2

XGBoost训练的最终参数"

参数名称 参数值
n_estimators 100
max_depth 8
min_child_weight 2
gamma 0.05
subsample 1
colsample_bytree 0.6
alpha 0.02
lambda 1
learning_rate 0.3

图5

K-means算法肘部图"

图6

WKNN的训练结果"

表3

各指纹库K值"

子指纹库标签 00 01 02 10 20 21
K 3 1 3 4 5 5

图7

不同定位算法的定位误差"

表4

5种定位算法定位精度比较"

定位技术 平均定位
误差
最大定位
误差
最小定位
误差
WKNN 2.17 4.81 0.23
RF 1.55 3.18 0.41
XGBoost-WKNN(聚类前) 1.77 4.86 0.31
XGBoost-RF(聚类后) 1.21 3.53 0.20
XGBoost-WKNN(聚类后) 0.89 2.46 0

图8

不同累积误差概率分布"

图9

3组实验的定位误差"

表5

定位时间对比"

定位技术 训练时间/s 平均定位时间/ms
WKNN 7 3.45
RF 90 3.89
XGBoost-WKNN(聚类前) 98 3.18
XGBoost-RF(聚类后) 150 4.01
XGBoost-WKNN(聚类后) 124 2.76
[1] 袁春妹, 墨影, 夏小云. 化纤和非织造机械:应市场需求而动[J]. 纺织机械, 2023(6):34-35.
YUAN Chunmei, MO Ying, XIA Xiaoyun. Chemical fiber and nonwoven machinery: moving in response to market demand[J]. Textile Machinery, 2023(6):34-35.
[2] 和钰杭. 化纤卷绕机锭轴回转精度预测与优化[D]. 上海: 东华大学,2022:23-24.
HE Yuhang. Prediction and optimization of rotary accuracy of spindle shaft in chemical fiber winding machine[D]. Shanghai: Donghua University,2022:23-24.
[3] 刘甜萌. 高速卷绕锭轴支承系统动力学性能研究[D]. 上海: 东华大学,2022:14-15.
LIU Tianmeng. Research on the dynamic performance of high-speed winding spindle shaft support system[D]. Shanghai: Donghua University,2022:14-15.
[4] 何守磊. 自动落卷输送控制系统研究与开发[D]. 上海: 东华大学,2021:17-18.
HE Shoulei. Research and development of automatic unwinding and conveying control system[D]. Shanghai: Donghua University,2021: 17-18.
[5] 任杰, 张洁, 汪俊亮. 纺织典型装备故障多特征自适应提取方法[J]. 纺织学报, 2024, 45(4): 211-220.
REN Jie, ZHANG Jie, WANG Junliang. Multi-feature adaptive extraction method for textile typical equipment faults[J]. Journal of Textile Research, 2024, 45(4): 211-20.
[6] 任荟颖, 邹鲲, 胡小荣. 化纤长丝自动落卷系统仿真平台开发[J]. 纺织学报, 2019, 40(7): 151-157.
REN Huiying, ZOU Kun, HU Xiaorong. Development of simulation platform for automatic unwinding system of chemical fiber filament[J]. Journal of Textile Research, 2019, 40(7): 151-157.
[7] 李珣, 李哲文, 张婷文, 等. 面向纺织生产环境的移动机器人定位方法[J]. 纺织学报, 2023, 44(12): 170-180.
doi: 10.13475/j.fzxb.20220606701
LI Xun, LI Zhewen, ZHANG Tingwen, et al. A mobile robot localization method for textile production environment[J]. Journal of Textile Research, 2023, 44(12): 170-180.
doi: 10.13475/j.fzxb.20220606701
[8] 丁歆甯. 基于机器视觉的室内定位与地图构建研究[D]. 南京: 南京邮电大学,2021:30-32.
DING Xinning. Research on indoor localization and map construction based on machine vision[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2021: 30-32.
[9] 刘韬, 徐爱功, 隋心. 基于自适应抗差卡尔曼滤波的UWB室内定位[J]. 传感技术学报, 2018, 31(4):567-572.
LIU Tao, XU Aigong, SUI Xin. UWB indoor localization based on adaptive anti-differential Kalman filtering[J]. Journal of Sensing Technology, 2018, 31(4):567-572.
[10] KWOK C Y T, WONG M S, GRIFFITHS S, et al. Performance evaluation of iBeacon deployment for location-based services in physical learning spaces[J]. Applied Sciences: Basel, 2020.DOI:10.3390/app10207126.
[11] CANOVAS O, LOPEZ-DE-TERUEL P E, RUIZ A. Detecting indoor/outdoor places using wifi signals and AdaBoost[J]. IEEE Sensors Journal, 2017, 17(5): 1443-53.
[12] CHON Y, CHA H. Lifemap: a smartphone-based context provider for location-based services[J]. IEEE Pervasive Computing, 2011, 10(2): 58-67.
[13] 刘晨旭, 王兴众, 郭浩年. 基于WiFi指纹的船舶人员定位算法[J]. 船舶物资与市场, 2023, 31(8):106-111.
LIU Chenxu, WANG Xingzhong, GUO Haonian. Ship personnel localization algorithm based on WiFi fingerprint[J]. Ship Materials and Markets, 2023, 31(8):106-111.
[14] 张静. 基于改进K-means聚类和WKNN算法的WiFi室内定位方法研究[D]. 呼和浩特: 内蒙古大学,2022:13-14.
ZHANG Jing. A research on wifi indoor positioning method based on improved K-means clustering and WKNN algorithm[D]. Hohhot: Inner Mongolia University, 2022:13-14.
[1] 聂梓萌, 杜劲松, 朱建龙, 岳春明, 葛旭光. 基于仿真区域性数据的服装团体定制归号机制[J]. 纺织学报, 2023, 44(05): 191-197.
[2] 任艳博, 蒋超, 王教庆, 俞琳, 王园园. 基于聚类算法和色彩网络的蝴蝶色彩分析及应用[J]. 纺织学报, 2021, 42(05): 103-108.
[3] 彭来湖 陈青松 汝欣 胡旭东 沈春娅. 圆纬机互联互通关键技术[J]. 纺织学报, 2018, 39(05): 119-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!