纺织学报 ›› 2025, Vol. 46 ›› Issue (05): 262-269.doi: 10.13475/j.fzxb.20241100901
YANG Qi1, ZHOU Xiaoyu2, JI Jing1, DAI Hongqin1,3(
)
摘要:
化学防护服通过隔绝人体与外界环境提供防护,但其特殊的面料结构往往导致作业者在穿着时面临较差的热湿舒适性。针对防化服热湿舒适性较差的问题,基于干湿气体交换原理,设计并开发一种外置式湿度调节装置。采用人体穿着试验开展该湿度调节装置在改善防化服热湿舒适性方面的评价研究,对比分析受试者穿着配备外置式湿度调节装置的试验防化服与对照防化服的衣下空气层温湿度、人体皮肤温度和主观感觉参数,从客观和主观2个方面评价配备该湿度调节装置的防化服在热湿舒适性方面的表现。试验结果表明,配备湿度调节装置的试验防化服能够在不同阶段有效降低衣下空气层相对湿度20%~40%,整体相对湿度能够维持在70%左右。主观评价试验中,穿着试验防化服的受试者反馈其整体湿感觉显著降低。此外,试验防化服对衣下空气层温度及皮肤温度亦具有一定的降低作用,主观评价显示其在调节人体的整体冷热感觉方面表现良好。
中图分类号:
| [1] | SHOVON B, RAKESH J, AHMAD A C, et al. Graphene modified multifunctional personal protective cloth-ing.[J]. Advanced Materials Interfaces, 2019.DOI:10.1002/admi.201900622. |
| [2] | 栗辰飞, 刘元军, 赵晓明. 生化防护服的研究进展[J]. 纺织学报, 2022, 43(7):207-216. |
| LI Chenfei, LIU Yuanjun, ZHAO Xiaoming. Research progress of biochemical protective clothing[J]. Journal of Textiles Research, 2022, 43(7):207-216. | |
| [3] | JIANG Haihua, CAO Bin, ZHU Yingxin. Improving thermal comfort of individual wearing medical protective clothing: two personal cooling strategies integrated with the polymer water-absorbing resin material[J]. Building and Environment, 2023.DOI:10.1016/J.BUILDENV.2023.110730. |
| [4] | 朱晓荣, 何佳臻, 王敏. 相变材料在热防护服上的应用研究进展[J]. 纺织学报, 2022, 43(4):194-202. |
| ZHU Xiaorong, HE Jiazhen, WANG Min. Research progress of phase change materials applied to thermal protective clothing[J]. Journal of Textile Research, 2022, 43(4):194-202. | |
| [5] | SU Xing, TIAN Shaochen, LI He, et al. Thermal and humid environment improvement of the protective clothing for medical use with a portable cooling device: analysis of air supply parameters[J]. Energy and Buildings, 2021. DOI:10.1016/J.ENBUILD.2021.110909. |
| [6] | WANG Wanwan, ZHAO Mengmeng. Design of liquid-air hybrid cooling garment and its effect on local thermal comfort[J]. Applied Sciences, 2023, 13(16): 9414. |
| [7] | XU Xin, ZHANG Lian, MIAO Deyu, et al. Research on the novel medical protective clothing for COVID-19[J]. Heliyon, 2023.DOI:10.1016/J.HELIYON.2023.E13374. |
| [8] | 韩郑良, 肖鑫. 复合固体干燥剂的研究进展[J]. 化工进展, 2023, 42(2):839-853. |
| HAN Zhengliang, XIAO Xin. Research progress of composite solid desiccant[J]. Advances in Chemical Industry, 2023, 42(2):839-853. | |
| [9] | 段敏, 李强, 刘文, 等. 食品包装用吸湿剂的研究进展[J]. 食品安全质量检测学报, 2018, 9(18):4893-4899. |
| DUAN Min, LI Qiang, LIU Wen, et al. Research progress of hygroscopic agents for food packaging[J]. Journal of Food Safety and Quality Inspection, 2018, 9(18):4893-4899. | |
| [10] | 刘林, 何兆红, 陈捷超, 等. 固体湿度调节复合干燥剂研究进展[J]. 新能源进展, 2017, 5(5):377-385. |
| LIU Lin, HE Zhaohong, CHEN Jiechao, et al. Research progress of solid dehumidification composite desiccant[J]. Advances in New Energy, 2017, 5(5):377-385. | |
| [11] | 苗苗, 鲁虹, 程梦琪. 运动前后人体体表温度变化与主观热感觉评定[J]. 纺织学报, 2018, 39(4):116-122. |
| MIAO Miao, LU Hong, CHENG Mengqi. Changes of body surface temperature and subjective thermal sensation assessment before and after exercise[J]. Journal of Textile Science, 2018, 39(4):116-122. | |
| [12] | 郭婷婷, 田宏. 医用防护服装下人体各部位的相对湿度测试[J]. 辽宁丝绸, 2021(2):60-6124. |
| GUO Tingting, TIAN Hong. Measurement of relative humidity of human body parts under medical protective clothing[J]. Liaoning Silk, 2021(2):60-6124. | |
| [13] | GOLBABAEI F, HEYDARI A, MORADI G, et al. The effect of cooling vests on physiological and perceptual responses: a systematic review[J]. International Journal of Occupational Safety and Ergonomics, 2022, 28(1): 223-255. |
| [14] | 牛梦雨, 潘姝雯, 戴宏钦, 等. 医用防护服的热湿舒适性与人体疲劳度的关系[J]. 纺织学报, 2021, 42(7):144-150. |
| NIU Mengyu, PAN Shuwen, DAI Hongqin, et al. The relationship between thermal and wet comfort of medical protective clothing and human fatigue[J]. Journal of Textile Science, 2019, 42(7):144-150. |
| [1] | 朱梦慧, 葛美彤, 董智佳, 丛洪莲, 马丕波. 纬编双面羊毛/涤纶交织物的结构与热湿性能评价[J]. 纺织学报, 2025, 46(05): 179-185. |
| [2] | 巫晓雯, 方蕾妹, 江昆, 丛洪莲. 基于热湿舒适性的横编全成形运动内衣的分区设计[J]. 纺织学报, 2024, 45(12): 172-179. |
| [3] | 王兆芳, 张辉, 丁波, 张淼. 文胸罩杯透湿率测定新方法[J]. 纺织学报, 2024, 45(01): 176-184. |
| [4] | 姚晨曦, 万爱兰. 聚对苯二甲酸丁二醇酯/聚对苯二甲酸乙二醇酯纬编运动T恤面料的热湿舒适性[J]. 纺织学报, 2024, 45(01): 90-98. |
| [5] | 王兆芳, 丁波, 张辉, 陈思璘. 青年女性胸部出汗分布和出汗率的测定[J]. 纺织学报, 2023, 44(12): 145-152. |
| [6] | 王予涛, 丛洪莲, 顾洪阳. 纬编成形护膝结构设计及其热湿舒适性[J]. 纺织学报, 2023, 44(10): 68-74. |
| [7] | 赵辰, 王敏, 李俊. 个体降温服优化设计对其降温效果影响的研究进展[J]. 纺织学报, 2023, 44(09): 243-250. |
| [8] | 丁雪婷, 王建萍, 潘婷, 姚晓凤, 袁鲁宁. 仿蜻蜓翅膀结构的冬季针织面料研发及其性能[J]. 纺织学报, 2023, 44(09): 75-83. |
| [9] | 陈佳慧, 梅涛, 赵青华, 尤海宁, 王雯雯, 王栋. 热湿舒适性智能织物的研究进展[J]. 纺织学报, 2023, 44(01): 30-37. |
| [10] | 牛梦雨, 潘姝雯, 戴宏钦, 吕凯敏. 医用防护服的热湿舒适性与人体疲劳度的关系[J]. 纺织学报, 2021, 42(07): 144-150. |
| [11] | 江燕婷, 严庆帅, 辛斌杰, 高琮, 施楣梧. 纺织品单向导水性能测试方法分析[J]. 纺织学报, 2021, 42(05): 51-58. |
| [12] | 王莉, 张冰洁, 王建萍, 刘莉, 杨雅岚, 姚晓凤, 李倩文, 卢悠. 基于仿生学的冬季针织运动面料开发与性能评价[J]. 纺织学报, 2021, 42(05): 66-72. |
| [13] | 杨阳, 俞欣, 章为敬, 张佩华. 针织面料凉爽性能的评价方法及其预测模型[J]. 纺织学报, 2021, 42(03): 95-101. |
| [14] | 孙岑文捷, 倪军, 张昭华, 董婉婷. 针织运动服的通风设计与热湿舒适性评价[J]. 纺织学报, 2020, 41(11): 122-127. |
| [15] | 张昭华, 李璐瑶, 安瑞平. 管道式通风服头部与躯干部位的热湿舒适性评价[J]. 纺织学报, 2020, 41(08): 88-94. |
|
||