纺织学报 ›› 2025, Vol. 46 ›› Issue (11): 1-8.doi: 10.13475/j.fzxb.20250500801
• 纤维材料 • 下一篇
梁治1,2, 姬康瑞1,2, 黎张成1,2, 何钰1,2, 王灿1,2, 侯冲1,2,3(
)
LIANG Zhi1,2, JI Kangrui1,2, LI Zhangcheng1,2, HE Yu1,2, WANG Can1,2, HOU Chong1,2,3(
)
摘要:
针对热致变色柔性温度传感器制备工艺复杂、拉伸性不足、多色彩协同调控困难等问题,通过溶液法将2种具有不同变色效果的热致变色微胶囊与热塑性弹性体苯乙烯-乙烯-丁烯-苯乙烯嵌段共聚物(SEBS)混合,制得纺丝液,再采用溶液吹纺技术制备出3种颜色分段响应的柔性可拉伸热致变色纤维膜。对热致变色纤维膜的微观结构进行测试表征,分析热致变色微胶囊质量分数对其力学性能的影响规律,研究热致变色微胶囊质量分数为30%的纤维膜在不同温度下的变色光谱特性和时间响应性能,并探究其疏水性和透湿性。结果表明:所制备的热致变色纤维膜在低于22 ℃时呈现蓝色,在22~35 ℃区间呈现白色,在高于35 ℃时转变为粉红色;该纤维膜具有良好的力学性能,断裂伸长率最高可达611%;同时,其还具备良好的疏水性,经10 min水浸润后,接触角仍大于120°。基于上述特性构建的柔性可穿戴温度传感器,实现了对环境温度的无源可视化监测,在柔性温度传感领域展现出广阔的应用前景。
中图分类号:
| [1] |
MADHVAPATHY S R, BURY M I, WANG L W, et al. Miniaturized implantable temperature sensors for the long-term monitoring of chronic intestinal inflammation[J]. Nature Biomedical Engineering, 2024, 8(8): 1040-1052.
doi: 10.1038/s41551-024-01183-w |
| [2] |
LU Y F, ZHANG H J, ZHAO Y, et al. Robust fiber-shaped flexible temperature sensors for safety monitoring with ultrahigh sensitivity[J]. Advanced Materials, 2024, 36(18): 2310613.
doi: 10.1002/adma.v36.18 |
| [3] |
XIAO H Y, LI S B, HE Z D, et al. Dual mode strain-temperature sensor with high stimuli discriminability and resolution for smart wearables[J]. Advanced Functional Materials, 2023, 33(16): 2214907.
doi: 10.1002/adfm.v33.16 |
| [4] |
CAI J Y, DU M J, LI Z L. Flexible temperature sensors constructed with fiber materials[J]. Advanced Materials Technologies, 2022, 7(7): 2101182.
doi: 10.1002/admt.v7.7 |
| [5] |
LIU L, DOU Y Y, WANG J H, et al. Recent advances in flexible temperature sensors: materials, mechanism, fabrication, and applications[J]. Advanced Science, 2024, 11(36): 2405003.
doi: 10.1002/advs.v11.36 |
| [6] |
LIU G, LV Z Y, BATOOL S, et al. Biocompatible material-based flexible biosensors: from materials design to wearable/implantable devices and integrated sensing systems[J]. Small, 2023, 19(27): 2207879.
doi: 10.1002/smll.v19.27 |
| [7] |
ARMAN KUZUBASOGLU B, KURSUN BAHADIR S. Flexible temperature sensors: a review[J]. Sensors and Actuators A: Physical, 2020, 315: 112282.
doi: 10.1016/j.sna.2020.112282 |
| [8] |
CHEN T D, YANG Q J, FANG C Q, et al. Advanced design for stimuli-reversible chromic wearables with customizable functionalities[J]. Advanced Materials, 2025, 37(6): 2413665.
doi: 10.1002/adma.v37.6 |
| [9] |
HA H, SURYAPRABHA T, CHOI C, et al. Recent research trends in textile-based temperature sensors: a mini review[J]. Nanotechnology, 2023, 34(42): 422001.
doi: 10.1088/1361-6528/ace913 |
| [10] |
ZHAN L Y, XU W X, HU Z X, et al. Full-color ″off-on″ thermochromic fluorescent fibers for customizable smart wearable displays in personal health monitoring[J]. Small, 2024, 20(29): 2310762.
doi: 10.1002/smll.v20.29 |
| [11] |
LIU S L, ZHANG W T, HE J Z, et al. Fabrication techniques and sensing mechanisms of textile-based strain sensors: from spatial 1D and 2D perspectives[J]. Advanced Fiber Materials, 2024, 6(1): 36-67.
doi: 10.1007/s42765-023-00338-9 |
| [12] |
吕晓双, 刘丽萍, 俞建勇, 等. 纤维基自供能电子皮肤的构建及其应用性能研究进展[J]. 纺织学报, 2022, 43(10): 183-191.
doi: 10.13475/j.fzxb.20220404509 |
|
LÜ Xiaoshuang, LIU Liping, YU Jianyong, et al. Fabrication and application research progress of fiber-based self-powered electronic skins[J]. Journal of Textile Research, 2022, 43(10): 183-191.
doi: 10.13475/j.fzxb.20220404509 |
|
| [13] |
LIM T, SEO H S, YANG J, et al. Reversible thermochromic fibers with excellent elasticity and hydrophobicity for wearable temperature sensors[J]. RSC Advances, 2024, 14(9): 6156-6164.
doi: 10.1039/d3ra06432h pmid: 38375008 |
| [14] |
KIM D H, BAE J, LEE J, et al. Porous nanofiber membrane: rational platform for highly sensitive thermochromic sensor[J]. Advanced Functional Materials, 2022, 32(24): 2200463.
doi: 10.1002/adfm.v32.24 |
| [15] |
LI P, SUN Z H, WANG R, et al. Flexible thermochromic fabrics enabling dynamic colored display[J]. Frontiers of Optoelectronics, 2022, 15(1): 40.
doi: 10.1007/s12200-022-00042-3 |
| [16] |
GE F Q, PENG J, TAN J L, et al. Color tunable photo-thermochromic elastic fiber for flexible wearable heater[J]. Advanced Composites and Hybrid Materials, 2024, 7(5): 173.
doi: 10.1007/s42114-024-00994-4 |
| [17] |
ZHANG L P, YANG Y T, WANG J X, et al. A portable, sprayable, highly malleable, elastic, and hydrophobic antibacterial fibrous wound dressing for infected wound healing[J]. Advanced Fiber Materials, 2025, 7(2): 528-540.
doi: 10.1007/s42765-024-00500-x |
| [18] |
QU Y P, NGUYEN-DANG T, PAGE A G, et al. Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing[J]. Advanced Materials, 2018, 30(27): 1707251.
doi: 10.1002/adma.v30.27 |
| [19] |
LI D, LIU X, LI W, et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling[J]. Nature Nanotechnology, 2020, 16(2): 153-158.
doi: 10.1038/s41565-020-00800-4 |
| [20] |
WU X K, LI J L, XIE F, et al. A dual-selective thermal emitter with enhanced subambient radiative cooling performance[J]. Nature Communications, 2024, 15: 815.
doi: 10.1038/s41467-024-45095-4 pmid: 38280849 |
| [21] |
LIU B Y, WU J W, XUE C H, et al. Bioinspired superhydrophobic all-In-one coating for adaptive thermoregulation[J]. Advanced Materials, 2024, 36(31): 2400745.
doi: 10.1002/adma.v36.31 |
| [1] | 张红霞, 齐芳汐, 赵静, 邢毅, 吕治家. 蜂巢结构介电层织物基传感器的一体成形及其性能[J]. 纺织学报, 2025, 46(10): 86-94. |
| [2] | 方剑, 任松, 张传雄, 陈钱, 夏广波, 葛灿. 智能可穿戴纺织品用电活性纤维材料[J]. 纺织学报, 2021, 42(09): 1-9. |
|
||