纺织学报 ›› 2020, Vol. 41 ›› Issue (07): 167-173.doi: 10.13475/j.fzxb.20190805907

• 综合述评 • 上一篇    下一篇

柔性ZrO2纳米纤维膜的制备及其应用研究现状

吴红, 刘呈坤(), 毛雪, 阳智, 陈美玉   

  1. 西安工程大学 纺织科学与工程学院, 陕西 西安 710048
  • 收稿日期:2019-08-26 修回日期:2020-04-12 出版日期:2020-07-15 发布日期:2020-07-23
  • 通讯作者: 刘呈坤
  • 作者简介:吴红(1994—),女,硕士生。主要研究方向为静电纺柔性无机纳米材料。
  • 基金资助:
    国家自然科学基金项目(51503168);陕西省创新人才推进计划-青年科技新星项目(2017KJXX-23);山东省博士后创新项目专项资金资助项目(201504);西安工程大学研究生年度创新基金项目(chx2019002);广东省科技计划项目(2017B090904031)

Research progress in preparation and application of flexible zirconia nanofibers by electrospinning

WU Hong, LIU Chengkun(), MAO Xue, YANG Zhi, CHEN Meiyu   

  1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • Received:2019-08-26 Revised:2020-04-12 Online:2020-07-15 Published:2020-07-23
  • Contact: LIU Chengkun

摘要:

针对现有制备方法获得二氧化锆(ZrO2)纳米纤维膜柔性不足的问题,综述了近年来利用静电纺丝技术在制备柔性ZrO2纳米纤维膜方面的研究进展。基于现有研究成果,从前驱体溶液、静电纺丝工艺和煅烧温度3方面系统阐述了静电纺制备柔性ZrO2纳米纤维膜的工艺流程,并概述了纤维形貌、孔隙结构和晶体结构对柔性ZrO2纳米纤维膜的影响,介绍了柔性ZrO2纳米纤维膜在能源、生物等领域的应用。最后指出:采用静电纺丝技术制备的柔性ZrO2纳米纤维膜具有比表面积大、耐热性高等一系列优异特性,但仍存在纤维膜韧性相对较差的缺陷,尚无法满足实际工况要求;提高柔性ZrO2纳米纤维膜的整体力学性能,并进行批量化制造,以满足实际应用是未来研究的重点。

关键词: 静电纺丝, 二氧化锆, 纳米纤维膜, 制备工艺

Abstract:

Aiming at the problem of insufficient flexibility of zirconia (ZrO2) nanofibers in the existing preparation methods, the research progress in the recent years in the application of electrospinning technology in the preparation of flexible ZrO2 nanofiber membranes was reviewed. Based on the existing research results, the process of electrospinning flexible ZrO2 nanofiber membranes was systematically described from three aspects, which are precursor solution, electrospinning process and calcination temperature. The morphology, pore structure and crystal structure of the flexible ZrO2 were summarized. The applications of flexible ZrO2 nanofiber membranes in energy, biology and other fields were introduced. The analysis shows that the flexible ZrO2 nanofiber membrane prepared by electrospinning technology has a series of excellent properties such as large specific surface area and high heat resistance. However, it still has the disadvantage of relatively poor toughness of the fiber membrane, which fails to meet the requirements of actual working conditions. It is pointed out that improving the overall mechanical properties of flexible ZrO2 nanofiber membranes and mass-producing them to meet practical applications should be the focus of future research.

Key words: electrospinning, zirconia, nanofiber membrane, preparation techniques

中图分类号: 

  • TQ340.64

表1

静电纺制备柔性ZrO2纳米纤维膜的前驱体溶液组分汇总"

组分 功能 原料 参考文献
锆源 提供锆元素 正丙醇锆、醋酸锆、氧化锆分散体、
乙酰丙酮锆、氧氯化锆
[16-20]
高分子聚合物 提高溶液的可纺性 聚环氧乙烷、聚乙烯醇、聚乙烯吡咯烷酮、
左旋聚乳酸、聚丙烯腈、聚己内酯
[21-26]
稳定剂 抑制氧化锆晶型转变 氧化钇、氧化铝、氧化铁 [27-29]

表2

柔性ZrO2纳米纤维膜在不同应用领域的制备工艺"

前驱体溶液 纺丝参数 煅烧工艺 应用 参考文献
电压/
kV
距离/
cm
速度/
(mL·h-1)
聚丙烯腈/聚乙烯吡咯烷酮/
N,N-二甲基甲酰胺/异丙醇锆
15 - 1.1 2 ℃/min、270 ℃
(2 h,空气气氛);
2 ℃/min、1 100 ℃
(1 h, 氮气气氛)
染料敏化
太阳能电池
[43]
聚丙烯腈/聚乙烯吡咯烷酮/乙酸/N,N-二甲基甲酰胺/异丙醇锆 15 12 1.1 270 ℃ (2 h, 空气气氛)
2 ℃/min、1 100 ℃
(1 h, 氮气气氛)
染料敏化
太阳能电池
[44]
正丙醇锆/六水乙酸钇/聚乙烯吡咯烷酮 15 1 20 5 ℃/min、850 ℃
(空气气氛)
骨组织支架 [45]
氧化锆/氧化钇/二氧化硅 - - - 1 200 ℃
(空气气氛)
牙科复合材料 [46]
乙酸锆/聚乙烯吡咯烷酮/六水氯化铝 25 20 1 5 ℃/min、850 ℃
(2 h, 空气气氛)
红外隐身材料 [47]
聚乙烯醇/正硅酸乙酯/二甘醇/磷酸/过氧化氢/丙酮/乙醇/醋酸铋 16 15 1 800 ℃
(4 h, 空气气氛)
红外隐身材料 [48]
氧化锆/聚环氧乙烷/聚乙酰丙酮锆/甲醇/五水硝酸铒/六水硝酸镱 17.5 20 2 1 000 ℃
(1 h, 空气气氛)
发光材料 [49]
乙酸锆/六水硝酸钇/聚乙烯吡咯烷酮 25 20 1 5 ℃/min、1 200 ℃
(2 h, 空气气氛)
腐蚀性液体过滤 [40]
[1] LUO J M, LUO X B, HU C Z, et al. Zirconia (ZrO2) embedded in carbon nanowires via electrospinning for efficient arsenic removal from water combined with DFT studies[J]. ACS Applied Materials & Interfaces, 2016,8(29):18912-18921.
doi: 10.1021/acsami.6b06046 pmid: 27381268
[2] 白莹, 毛雪, 俞建勇, 等. 柔性YSZ-TiO2纳米纤维膜的制备及其光催化性能研究[J]. 化工新型材料, 2018,46(3):67-74.
BAI Ying, MAO Xue, YU Jianyong, et al. Preparation and photocatalytic performance of flexuble YSZ-TiO2 nanofibrous membrane[J]. New Chemical Materials, 2018,46(3):67-74.
[3] KOO J Y, LIM Y, KIM Y B, et al. Electrospun yttria-stabilized zirconia nanofibers for low-temperature solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2017,42(24):15903-15907.
[4] ZHI M J, LEE S, MILLER N, et al. An intermediate-temperature solid oxide fuel cell with electrospun nanofiber cathode[J]. Energy & Environmental Science, 2012,5(5):7066-7071.
[5] JAYAKUMAR R, RAMACHANDRAN R, KUMAR P T S, et al. Fabrication of chitin-chitosan/nano ZrO2 composite scaffolds for tissue engineering applica-tions[J]. International Journal of Biological Macromolecules, 2011,49(3):274-280.
pmid: 21575656
[6] CHAN K, TSOI J K H, WU O K, et al. Mechanical and biological evaluations of novel electrospun PLLA composite scaffolds doped with oxide ceramics[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019,97:229-237.
pmid: 31132659
[7] ABE Y, KUDO T, TOMIOKA H, et al. Preparation of continuous zirconia fibres from polyzirconoxane synthesized by the facile one-pot reaction[J]. Journal of Materials Science, 1998,33(7):1863-1870.
doi: 10.1023/A:1004357405815
[8] YANG J, YOO J J, JANG H J, et al. Preparation and characterization of PAN based carbon fibers having zirconia nanofibers[J]. IEEE Transactions on Software Engineering, 2012,49(5):307-313.
[9] BUKHARI B S, IMRAN M, BASHIR M, et al. Honey mediated microwave assisted sol-gel synjournal of stabilized zirconia nanofibers[J]. Journal of Sol-Gel Science and Technology, 2018,87(3):554-567.
[10] 吕婷婷, 安瑛, 李好义, 等. 静电纺动物蛋白纳米纤维研究进展[J]. 纺织学报, 2019,40(12):140-145.
LÜ Tingting, AN Ying, LI Haoyi, et al. Research progress of electrospun animal protein nanofibers[J]. Journal of Textile Research, 2019,40(12):140-145.
[11] SHAO C L, GUAN H Y, LIU Y C, et al. A novel method for making ZrO2 nanofibres via an electrospinning technique[J]. Journal of Crystal Growth, 2004,267(1/2):380-384.
[12] YE Y P, LI J G, ZHOU H D, et al. Microstructure and mechanical properties of yttria-stabilized ZrO2/Al2O3 nanocomposite ceramics[J]. Ceramics International, 2008,34(8):1797-1803.
[13] 郭景坤. 关于陶瓷材料的脆性问题[J]. 复旦学报(自然科学版), 2003(6):822-827.
GUO Jingkun. The brittleness problem of ceramic material[J]. Journal of Fudan (Natural Science Edition), 2003(6):822-827.
[14] 潘梅, 刘久荣, 孟凡青, 等. ZrO2连续纤维研究进展[J]. 硅酸盐通报, 2001,20(1):41-45.
PAN Mei, LIU Jiurong, MENG Fanqing, et al. A review of research on zirconia fibres[J]. Bulletin of The Chinese Ceramic Society, 2001,20(1):41-45.
[15] 胡晓敏, 高杨, 吴宁, 等. 静电纺丝制备无机纳米纤维及应用进展[J]. 山东纺织科技, 2016,57(1):52-56.
HU Xiaomin, GAO Yang, WU Ning, et al. Preparation and application of inorganic nanofibers by electrospinning[J]. Shandong Textile Science & Technology, 2016,57(1):52-56.
[16] QIN D K, GU A J, LIANG G Z, et al. A facile method to prepare zirconia electrospun fibers with different morphologies and their novel composites based on cyanate ester resin[J]. RSC Aadvances, 2012,2(4):1364-1372.
[17] TUNC T, USLU I. Fabrication and characterization of boron doped yttria-stabilized zirconia nanofibers[J]. Polymer Engineering and Science, 2013,53(5):963-969.
[18] LI L P, ZHANG P G, LIANG J D, et al. Phase transformation and morphological evolution of electrospun zirconia nanofibers during thermal annealing[J]. Ceramics International, 2010,36(2):589-594.
[19] WANG H, DUAN Y K, ZHONG W W. ZrO2 nanofiber as a versatile tool for protein analysis[J]. ACS Applied Materials & Interfaces, 2015,7(48):26414-26420.
doi: 10.1021/acsami.5b09348 pmid: 26571083
[20] YIN L F, NIU J F, SHEN Z Y, et al. Preparation and photocatalytic activity of nanoporous zirconia electrospun fiber mats[J]. Materials Letters, 2011,65(19/20):3131-3133.
[21] RODAEV V V, ZHIGACHEV A O, KORENKOV V V, et al. The influence of zirconia precursor/binding polymer mass ratio in the intermediate electrospun composite fibers on the phase transformation of final zirconia nanofibers[J]. Physica Status Solidi A: Applications and Materials Science, 2016,213(9):2352-2355.
[22] SALIGHEH O, KHAJAVI R, YAZDANSHENAS M E, et al. Fabrication and optimization of poly(vinyl alcohol)/zirconium acetate electrospun nanofibers using taguchi experimental design[J]. Journal of Macromolecular Science Part B:Physics, 2015,54(11):1391-1403.
[23] RODAEV V V, ZHIGACHEV A O, GOLOVIN Y I. Fabrication and characterization of electrospun ZrO2/Al2O3 nanofibers[J]. Ceramics International, 2017,43(17):16023-16026.
[24] WANG H L, MA X K, LI Y A, et al. Synjournal, antimicrobial and release of chloroamphenicol loaded poly(L-lactic acid)/ZrO2 nanofibrous membranes[J]. International Journal of Biological Macromolecules, 2013,62:494-499.
pmid: 24120960
[25] KOO J Y, HWANG S, AHN M, et al. Controlling the diameter of electrospun yttria-stabilized zirconia nanofibers[J]. Journal of the American Ceramic Society, 2016,99(9):3146-3150.
doi: 10.1111/jace.14331
[26] THAKARE V G, JOSHI P A, GODSE R R, et al. Fabrication of polycaprolactone/zirconia nanofiber scaffolds using electrospinning technique[J]. Journal of Polymer Research, 2017. DOI: 10.1007/s10965-017- 1388-z.
doi: 10.34133/2019/2389254 pmid: 31922131
[27] MILSOM B, VIOLA G, GAO Z P, et al. The effect of carbon nanotubes on the sintering behaviour of zirconia[J]. Journal of the European Ceramic Society, 2012,32(16):4149-4156.
doi: 10.1016/j.jeurceramsoc.2012.07.028
[28] NAYEBZADEH H, SAGHATOLESLAMI N, TABASIZADEH M. Application of microwave irradiation for fabrication of sulfated ZrO2-Al2O3 nanocomposite via combustion method for esterification reaction: process condition evaluation[J]. Journal of Nanostructure in Chemistry, 2019,9(2):141-152.
doi: 10.1007/s40097-019-0304-y
[29] 李微, 刘凤华, 吴大旺. 柔性钇稳定氧化锆纳米纤维的制备[J]. 广州化工, 2018,46(10):45-49.
LI Wei, LIU Fenghua, WU Dawang. Preparation of flexible yttria-stabilized zirconia nanofibers[J]. Guangzhou Chemical Industry, 2018,46(10):45-49.
[30] 丁彬, 俞建勇. 静电纺丝与纳米纤维[M]. 北京: 中国纺织出版社, 2011: 50-59.
DING Bin, YU Jianyong. Electrosinning and nano-fibers[M]. Beijing: China Textile & Apparel Press, 2011: 50-59.
[31] SUN Y J, QU J K, GUO Q, et al. Preparation of fine-grained silica-doped zirconia fibers by electrospin-ning[J]. Ceramics International, 2017,43(15):12551-12556.
doi: 10.1016/j.ceramint.2017.06.129
[32] ZHANG H B, EDIRISINGHE M J. Electrospinning zirconia fiber from a suspension[J]. Journal of the American Ceramic Society, 2006,89(6):1870-1875.
doi: 10.1111/jace.2006.89.issue-6
[33] SALIGHEH O, KHAJAVI R, YAZDANSHENAS M E, et al. Production and characterization of zirconia (ZrO2) ceramic nanofibers by using electrospun poly(vinyl alcohol)/zirconium acetate nanofibers as a pre-cursor[J]. Journal of Macromolecular Science Part B:Physics, 2016,55(6):605-616.
doi: 10.1080/00222348.2016.1179165
[34] CASTKOVA K, MACA K, SEKANINOVA J, et al. Electrospinning and thermal treatment of yttria doped zirconia fibres[J]. Ceramics International, 2017,43(10):7581-7587.
doi: 10.1016/j.ceramint.2017.03.050
[35] 毛雪. ZrO2基纳米纤维膜的柔性机制及其应用研究[D]. 上海:东华大学, 2016: 67-71.
MAO Xue. Flexible mechanism of ZrO2 based nanofiberous membranes and their application[D]. Shanghai: Donghua University, 2016: 67-71.
[36] WANG H L, LIN S, YANG S, et al. High-temperature particulate matter filtration with resilient yttria-stabilized ZrO2 nanofiber sponge[J]. Small, 2018. DOI: 10.1002/smll.201800258.
doi: 10.1002/smll.202005728 pmid: 33470521
[37] WANG Y, HAN C, ZHENG D, et al. Large-scale, flexible and high-temperature resistant ZrO2/SiC ultrafine fibers with a radial gradient composition[J]. Journal of Materials Chemistry A, 2014,2(25):9607-9612.
doi: 10.1039/c4ta00347k
[38] CHATTOPADHYAY S, BYSAKH S, SAHA J, et al. Electrospun ZrO2 nanofibers: precursor controlled mesopore ordering and evolution of garland-like nanocrystal arrays[J]. Dalton Transactions, 2018,47(16):5789-5800.
doi: 10.1039/c8dt00415c pmid: 29644370
[39] MAO X, SHAN H R, SONG J, et al. Brittle-flexible-brittle transition in nanocrystalline zirconia nanofibrous membranes[J]. Crystengcomm, 2016,18(7):1139-1146.
doi: 10.1039/C5CE02382C
[40] CHEN Y C, MAO X, SHAN H R, et al. Free-standing zirconia nanofibrous membranes with robust flexibility for corrosive liquid filtration[J]. RSC Advances, 2014,4(6):2756-2763.
doi: 10.1039/c3ra45043k
[41] CHRASKA T, KING A H, BERNDT C C, et al. On the size-dependent phase transformation in nanoparticulate zirconia[J]. Materials Science & Engineering A, 2000,286(1):169-178.
[42] SUN G X, LIU F T, BI J Q, et al. Electrospun zirconia nanofibers and corresponding formation mechanism study[J]. Journal of Alloys and Compounds, 2015,649:788-792.
doi: 10.1016/j.jallcom.2015.03.068
[43] YIN X, XIE X Y, SONG L X, et al. The application of highly flexible ZrO2/C nanofiber films to flexible dye-sensitized solar cells[J]. Journal of Materials Science, 2017,52(18):11025-11035.
doi: 10.1007/s10853-017-1287-z
[44] YIN X, XIE X Y, SONG L X, et al. Enhanced performance of flexible dye-sensitized solar cells using flexible Ag@ZrO2/C nanofiber film as low-cost counter electrode[J]. Applied Surface Science, 2018,440:992-1000.
doi: 10.1016/j.apsusc.2018.01.264
[45] GAZQUEZ G C, CHEN H L, VELDHUIS S A, et al. Flexible yttrium-stabilized zirconia nanofibers offer bioactive cues for osteogenic differentiation of human mesenchymal stromal cells[J]. ACS Nano, 2016,10(6):5789-5799.
pmid: 27294434
[46] GUO G Q, FAN Y W, ZHANG J F, et al. Novel dental composites reinforced with zirconia-silica ceramic nanofibers[J]. Dental Materials, 2012,28(4):360-368.
doi: 10.1016/j.dental.2011.11.006 pmid: 22153326
[47] MAO X, BAI Y, YU J Y, et al. Insights into the flexibility of ZrMxOy (M=Na, Mg, Al) nanofibrous membranes as promising infrared stealth materials[J]. Dalton Transactions, 2016,45(15):6660-6666.
doi: 10.1039/c6dt00319b pmid: 26974663
[48] LIU X F, LAI Y K, HUANG J Y, et al. Hierarchical SiO2@Bi2O3 core/shell electrospun fibers for infrared stealth camouflage[J]. Journal of Materials Chemistry C, 2015,3(2):345-351.
doi: 10.1039/C4TC01873G
[49] ZHANG X S, XU D, ZHOU G J, et al. Color tunable up-conversion emission from ZrO2: Er3+,Yb3+ textile fibers[J]. RSC Advances, 2016,6(106):103973-103980.
doi: 10.1039/C6RA20388D
[1] 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174.
[2] 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29.
[3] 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45.
[4] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[5] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/ 聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[6] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/ FeCl3 复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20.
[7] 王利媛, 康卫民, 庄旭品, 鞠敬鸽, 程博闻. 磺化聚醚砜纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(11): 19-26.
[8] 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173.
[9] 王子希, 胡毅. 基于ZnCo2O4的多孔碳纳米纤维制备及其储能性能[J]. 纺织学报, 2020, 41(11): 10-18.
[10] 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[11] 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8.
[12] 段红梅, 汪希铭, 黄子欣, 高晶, 王璐. 纤维基介孔SiO2药物载体的构建及其释药性能[J]. 纺织学报, 2020, 41(07): 15-22.
[13] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/ 聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[14] 郝志奋, 徐乃库, 封严, 段梦馨, 肖长发. 聚甲基丙烯酸酯/ 聚丙烯酸酯共混纤维膜制备及其油水分离性能[J]. 纺织学报, 2020, 41(06): 21-26.
[15] 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!