纺织学报 ›› 2024, Vol. 45 ›› Issue (12): 180-188.doi: 10.13475/j.fzxb.20240200801
蔡丽玲1, 王梅2, 邵一兵1, 陈炜1, 曹华卿3, 季晓芬1,4(
)
CAI Liling1, WANG Mei2, SHAO Yibing1, CHEN Wei1, CAO Huaqing3, JI Xiaofen1,4(
)
摘要:
为优化消费者的定制体验,提升传统汉服定制推荐的效率,依据文本生成图片原理,提出一种基于改进堆叠生成对抗网络的智能定制推荐方法,该方法由2个生成对抗网络模型构成。首先构建基于嵌入式-长短期记忆网络(Embedding and Long Short-Term Memory,Embedding-LSTM)的需求文本编码模型,改进原模型存在的文本编码稀疏孤立问题;其次引入残差结构,提升汉服文图特征提取和传递能力,最后采用平均绝对误差构建损失函数优化学习过程,提升文本描述与生成图像的一致性。结果表明:与原模型相比,由改进模型所生成的汉服图像更逼真,质量更优,细节处理更精细,主客观评估结果证明模型改进的有效性;与ERNIE-ViLG、Composer和传统的Diffusion Model等大模型方法相比,所提方法在匹配需求文本和生成真实性方面表现更好,显示了其适用性。
中图分类号:
| [1] | CHAKRABORTY S, HOQUE M, JEEM N, et al. Fashion recommendation systems, models and methods: a review[J]. Informatics, 2021, 8(3): 1-34. |
| [2] | 杨宇, 吴国栋, 刘玉良, 等. 生成对抗网络及其个性化推荐研究[J]. 小型微型计算机系统, 2022, 43(3): 574-581. |
| YANG Yu, WU Guodong, LIU Yuliang, et al. Research on generative adversarial nets and personalized recommendation[J]. Journal of Chinese Computer Systems, 2022, 43(3): 574-581. | |
| [3] | 江学为, 田润雨, 卢方骁, 等. 基于模拟评分的服装推荐改进算法[J]. 纺织学报, 2021, 42(12): 138-144. |
| JIANG Xuewei, TIAN Runyu, LU Fangxiao, et al. Improved clothing recommendation algorithm based on simulation scoring[J]. Journal of Textile Research, 2021, 42(12): 138-144. | |
| [4] | HIDAYATI S, HSU C, CHANG Y, et al. What dress fits me best? fashion recommendation on the clothing style for personal body shape[C]// 2018 ACM Multimedia Conference. Seoul: Association for Computing Machinery, 2018: 438-446. |
| [5] | YANG B. Clothing design style recommendation using decision tree algorithm combined with deep learning[J]. Computational Intelligence and Neuro-science, 2022, 2022(1): 1-10. |
| [6] | 曹寅, 秦俊平, 马千里, 等. 文本生成图像研究综述[J]. 浙江大学学报(工学版), 2024, 58(2): 219-238. |
| CAO Yin, QIN Junping, MA Qianli, et al. Survey of text-to-image synthesis[J]. Journal of Zhejiang University (Engineering Science), 2024, 58(2):219-238. | |
| [7] | HUANG M, MAO Z, WANG P, et al. Dse-gan: Dynamic semantic evolution generative adversarial network for text-to-image generation[C]// Proceedings of the 30th ACM International Conference on Multimedia. Lisboa: Association for Computing Machinery, 2022: 4345-4354. |
| [8] | ZHANG H, KOH J Y, BALDRIDGE J, et al. Cross-modal contrastive learning for text-to-image genera-tion[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 833-842. |
| [9] | ZHANG H, XU T, LI H, et al. StackGAN: text to photo-realistic image synthesis with stacked generative adversarial networks[C]// 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 5908-5916. |
| [10] | ZHANG H, GOODFELLOW I J, METAXAS D N, et al. Self-attention generative adversarial networks[C]// Proceedings of the 36th International Conference on Machine Learning. Long Beach: Association for Computing Machinery, 2019: 7354-7363. |
| [11] | 任夷. 中国服装史[M]. 北京: 北京大学出版社, 2015:124-146. |
| REN Yi. History of Chinese clothing[M]. Beijing: Peking University Press, 2015:124-146. | |
| [12] | 杨婷婷, 虞佳颖, 肖姚, 等. 基于Embedding-GRU的水库水位预测模型[J]. 南水北调与水利科技(中英文), 2023, 21(5): 940-950. |
| YANG Tingting, YU Jiaying, XIAO Yao, et al. Reservoir level prediction based on Embedding-GRU model[J]. South-to-North Water Transfers and Water Science & Technology, 2023, 21(5): 940-950. | |
| [13] | JORDAN M. Serial order: a parallel distributed processing approach. advances in psychology[J]. North-Holland, 1997, 121: 471-495. |
| [14] | VAN HOUDT G, MOSQUERA C, NÁPOLES G. A review on the long short-term memory model[J]. Artificial Intelligence Review, 2020, 53(8): 5929-5955. |
| [15] | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. |
| [16] | HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. Gans trained by a two time-scale update rule converge to a local nash equilibrium[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc, 2017: 6629-6640. |
| [17] | ZHANG H, YIN W, FANG Y, et al. ERNIE-ViLG: Unified generative pre-training for bidirectional vision-language generation[EB/OL]. (2021-12-31)[2022-04-13]. https://arxiv.org/abs/2112.15283. |
| [18] | HUANG L, CHEN D, LIU Y, et al. Composer: Creative and controllable image synthesis with composable conditions[EB/OL]. (2023-2-20)[2023-02-23]. https://arxiv.org/abs/2112.15283. |
| [19] | ROMBACH R, BLATTMANN A, LORENZ D, et al. High-resolution image synthesis with latent diffusion models[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2022: 10684-10695. |
| [1] | 刘燕萍, 郭佩瑶, 吴莹. 面向织物疵点检测的深度学习技术应用研究进展[J]. 纺织学报, 2024, 45(12): 234-242. |
| [2] | 李杨, 张永超, 彭来湖, 胡旭东, 袁嫣红. 基于改进甲壳虫全域搜索算法的机织物疵点检测[J]. 纺织学报, 2024, 45(10): 89-94. |
| [3] | 陆寅雯, 侯珏, 杨阳, 顾冰菲, 张宏伟, 刘正. 基于姿态嵌入机制和多尺度注意力的单张着装图像视频合成[J]. 纺织学报, 2024, 45(07): 165-172. |
| [4] | 文嘉琪, 李新荣, 冯文倩, 李瀚森. 印花面料的边缘轮廓快速提取方法[J]. 纺织学报, 2024, 45(05): 165-173. |
| [5] | 陆伟健, 屠佳佳, 王俊茹, 韩思捷, 史伟民. 基于改进残差网络的空纱筒识别模型[J]. 纺织学报, 2024, 45(01): 194-202. |
| [6] | 池盼盼, 梅琛楠, 王焰, 肖红, 钟跃崎. 基于边缘填充的单兵迷彩伪装小目标检测[J]. 纺织学报, 2024, 45(01): 112-119. |
| [7] | 刘玉叶, 王萍. 基于纹理特征学习的高精度虚拟试穿智能算法[J]. 纺织学报, 2023, 44(05): 177-183. |
| [8] | 杨宏脉, 张效栋, 闫宁, 朱琳琳, 李娜娜. 一种高鲁棒性经编机上断纱在线检测算法[J]. 纺织学报, 2023, 44(05): 139-146. |
| [9] | 顾冰菲, 张健, 徐凯忆, 赵崧灵, 叶凡, 侯珏. 复杂背景下人体轮廓及其参数提取[J]. 纺织学报, 2023, 44(03): 168-175. |
| [10] | 李杨, 彭来湖, 李建强, 刘建廷, 郑秋扬, 胡旭东. 基于深度信念网络的织物疵点检测[J]. 纺织学报, 2023, 44(02): 143-150. |
| [11] | 王斌, 李敏, 雷承霖, 何儒汉. 基于深度学习的织物疵点检测研究进展[J]. 纺织学报, 2023, 44(01): 219-227. |
| [12] | 陈佳, 杨聪聪, 刘军平, 何儒汉, 梁金星. 手绘草图到服装图像的跨域生成[J]. 纺织学报, 2023, 44(01): 171-178. |
| [13] | 安亦锦, 薛文良, 丁亦, 张顺连. 基于图像处理的纺织品耐摩擦色牢度评级[J]. 纺织学报, 2022, 43(12): 131-137. |
| [14] | 陈金广, 李雪, 邵景峰, 马丽丽. 改进YOLOv5网络的轻量级服装目标检测方法[J]. 纺织学报, 2022, 43(10): 155-160. |
| [15] | 江慧, 马彪. 基于服装风格的款式相似度算法[J]. 纺织学报, 2021, 42(11): 129-136. |
|
||