纺织学报 ›› 2025, Vol. 46 ›› Issue (06): 178-186.doi: 10.13475/j.fzxb.20241000601
XIANG Wenlong(
), YANG Jingran, XIAO Xiaozhen
摘要: 为改善金属有机框架(MOFs)材料的重复回收和连续操作性能,通过溶剂热原位生长法制备了FeCo-1,4-苯二甲酸/稻谷壳复合材料FeCo-BDC/RH。借助扫描电子显微镜、X射线衍射仪和红外光谱仪等分析了FeCo-BDC/RH的形貌及结构;评估了复合材料活化过一硫酸盐(PMS)对罗丹明B(RhB)的脱色效果,并通过猝灭实验和电子顺磁共振谱揭示了脱色过程的关键活性物种及其产生机制。结果表明:FeCo-BDC/RH能高效激活PMS,实现RhB的快速脱色;5 min内FeCo-BDC/RH+PMS体系对RhB的脱色率高达99%;该体系在不同pH值的溶液及天然水质条件下均表现出稳定的脱色性能,且对多种染料具有良好的普适性;在固定床反应器中以 32 h-1 液时空速连续反应 300 min,FeCo-BDC/RH 复合材料对 RhB 的脱色率仍近100%,显示出良好的稳定性和高活性;1O2是参与染料脱色的主要活性物种,SO41·次之,复合材料中的双金属位点Fe(Ⅲ)/Fe(Ⅱ)和Co(Ⅲ)/Co(Ⅱ)是产生这些活性物种的关键活性位点。
中图分类号:
| [1] | 杨亮, 孔韩韩, 李韦霖, 等. 沸石咪唑酯骨架-8的制备及其对刚果红的吸附性能[J]. 纺织学报, 2024, 45 (7): 140-149. |
| YANG Liang, KONG Hanhan, LI Weilin, et al. Preparation of zeolitic imidazolate framework-8 and its adsorption performance on Congo Red[J]. Journal of Textile Research, 2024, 45(7): 140-149. | |
| [2] |
黄彪, 郑莉娜, 秦妍, 等. 多孔型TiO2微粒的制备及其对离子型染料的吸附[J]. 纺织学报, 2023, 44(11): 167-175.
doi: 10.13475/j.fzxb.20221103501 |
|
HUANG Biao, ZHENG Li'na, QIN Yan, et al. Preparation of porous TiO2 particles and their adsorption for ionic dyes[J]. Journal of Textile Research, 2023, 44(11): 167-175.
doi: 10.13475/j.fzxb.20221103501 |
|
| [3] | XIANG W, ZHANG X, XIAO R, et al. Three-dimensional porous bimetallic metal-organic framework/gelatin aerogels: a readily recyclable peroxymonosulfate activator for efficient and continuous organic dye removal[J]. Chinese Journal of Chemical Engineering, 2024. DOI: 10.1016/j.cjche.2024.04.007. |
| [4] |
马阳, 叶刚, 马邕文, 等. 基于SO4-·的高级氧化技术对低生化性废水的预处理研究[J]. 工业水处理, 2023, 43(12): 73-78.
doi: 10.19965/j.cnki.iwt.2022-1255 |
| MA Yang, YE Gang, MA Yongwen, et al. Research on pretreatment of low biochemical wastewater by advanced oxidation technology based on SO4-·[J]. Industrial Water Treatment, 2023, 43(12): 73-78. | |
| [5] | BILAL ASIF M, KIM S-J, NGUYEN T S, et al. Highly efficient micropollutant decomposition by ultrathin amorphous cobalt-iron oxide nanosheets in peroxymonosulfate-mediated membrane-confined catalysis[J]. Chemical Engineering Journal, 2024. DOI: 10.1016/j.cej.2024.149352. |
| [6] |
田婷婷, 李朝阳, 王召东, 等. 过渡金属活化过硫酸盐降解有机废水技术研究进展[J]. 化工进展, 2021, 40 (6): 3480-3488.
doi: 10.16085/j.issn.1000-6613.2020-1469 |
|
TIAN Tingting, LI Chaoyang, WANG Zhaodong, et al. Research progress of transition metal activated persulfate to degrade organic wastewater[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3480-3488.
doi: 10.16085/j.issn.1000-6613.2020-1469 |
|
| [7] | WANG Q, LU J, JIANG Y, et al. FeCo bimetallic metal organic framework nanosheets as peroxymonosulfate activator for selective oxidation of organic pollutants[J]. Chemical Engineering Journal, 2022. DOI: 10.1016/j.cej.2022.136483. |
| [8] | LIU X, ZHOU J, LIU D, et al. Co isomorphic substitution for Cu-based metal organic framework based on electronic structure modulation boosts Fenton-like process[J]. Separation and Purification Technology, 2023. DOI: 10.1016/j.seppur.2022.122526. |
| [9] | YAO Y, WANG C, NA J, et al. Macroscopic MOF architectures: effective strategies for practical application in water treatment[J]. Small, 2022. DOI: 10.1002/smll.202104387. |
| [10] | 张诗雨, 姚依婷, 董晨珊, 等. 金属有机框架/聚丙烯纤维基复合材料对化学战剂模拟物的快速降解[J]. 纺织学报, 2024, 45 (6): 134-141. |
| ZHANG Shiyu, YAO Yiting, DONG Chenshan, et al. Metal-organic frameworks/polypropylene fiber-based composite for rapid degradation of chemical warfare agent simulants[J]. Journal of Textile Research, 2024, 45(6): 134-141. | |
| [11] | YI X H, WANG C C. Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: a mini review[J]. Chinese Chemical Letters, 2024. DOI: 10.1016/j.cclet.2023.109094. |
| [12] | XIANG W, GEBHARDT S, GLÄSER R, et al. Millimeter-scale magnetic spherical metal-organic framework core-shell structured composites for recyclable catalytic applications[J]. Microporous and Mesoporous Materials, 2020. DOI: 10.1016/j.micromeso.2020.110152. |
| [13] |
MA J, LI Y, WANG C C, et al. Superior removal of vanadium(V) from simulated groundwater with a Fe-based metal-organic framework immobilized on cotton fibers[J]. Langmuir, 2023, 39 (47): 16863-16872.
doi: 10.1021/acs.langmuir.3c02411 pmid: 37963178 |
| [14] | WANG J S, YI X H, XU X, et al. Eliminating tetracycline antibiotics matrix via photoactivated sulfate radical-based advanced oxidation process over the immobilized MIL-88A: batch and continuous experiments[J]. Chemical Engineering Journal, 2022. DOI: 10.1016/j.cej.2021.133213. |
| [15] | DUAN C, MENG X, LIU C, et al. Carbohydrates-rich corncobs supported metal-organic frameworks as versatile biosorbents for dye removal and microbial inactiva-tion[J]. Carbohydrate Polymers, 2019. DOI: 10.1016/j.carbpol.2019.115042. |
| [16] | HOU C, CHEN W, FU L, et al. Facile synthesis of a Co/Fe bi-MOFs/CNF membrane nanocomposite and its application in the degradation of tetrabromobisphenol A[J]. Carbohydrate Polymers, 2020. DOI: 10.1016/j.carbpol.2020.116731. |
| [17] |
郑琳娟, 郁佳, 尹冲, 等. 多酸基金属-有机框架负载棉织物的制备及其光催化性能[J]. 纺织学报, 2022, 43 (10): 106-111.
doi: 10.13475/j.fzxb.20210704006 |
|
ZHENG Linjuan, YU Jia, YIN Chong, et al. Preparation and photocatalytic properties of cotton fabrics loaded with polymetallic organic framework material[J]. Journal of Textile Research, 2022, 43(10): 106-111.
doi: 10.13475/j.fzxb.20210704006 |
|
| [18] | RAJEENDRE Katugampalage T, WARIBAM P, OPAPRAKASIT P, et al. Bimetallic Fe:Co metal-organic framework (MOF) with unsaturated metal sites for efficient Fenton-like catalytic degradation of oxytetracycline (OTC) antibiotics[J]. Chemical Engineering Journal, 2024. DOI: 10.1016/j.cej.2023.147592. |
| [19] |
SURBLÉ S, SERRE C, MELLOT-DRAZNIEKS C, et al. A new isoreticular class of metal-organic-frameworks with the MIL-88 topology[J]. Chemical Communications, 2006 (3): 284-286.
pmid: 16391735 |
| [20] | LIU F, LI W, WU D, et al. New insight into the mechanism of peroxymonosulfate activation by nanoscaled lead-based spinel for organic matters degradation: a singlet oxygen-dominated oxidation process[J]. Journal of Colloid and Interface Science, 2020. DOI: 10.1016/j.jcis.2020.03.116. |
| [21] | GUO X, LI R, ZHANG Y, et al. Systematic investigation of peracetic acid activation by UV/ferric(Ⅲ) hydrate oxide for efficient degradation of norfloxacin: mechanisms and applications[J]. Chemical Engineering Journal, 2024. DOI: 10.1016/j.cej.2023.148468. |
| [1] | 韦选香, 冯杨, 樊翔宇, 吴明华, 余德游. 牦牛绒均相高级氧化脱色技术及机制[J]. 纺织学报, 2025, 46(06): 151-159. |
| [2] | 王薇, 高建南, 裴笑涵, 陆鑫, 孙银银, 吴建兵. 纤维素/甲基三甲氧基硅烷气凝胶的制备及其油水分离效能[J]. 纺织学报, 2025, 46(05): 135-142. |
| [3] | 金汝诗, 陈万明, 刘国金, 刘承海, 戚栋明, 翟世民. 生物炭在印染废水处理中的应用研究进展[J]. 纺织学报, 2025, 46(04): 235-243. |
| [4] | 李逢春, 孙辉, 于斌, 谢有秀, 张德伟. 共价有机框架材料/粘胶水刺非织造布的制备及其染料吸附性能[J]. 纺织学报, 2025, 46(02): 170-179. |
| [5] | 杨亮, 孔韩韩, 李韦霖, 祁小芬, 张天芸, 王雪梅, 李文全. 沸石咪唑酯骨架-8的制备及其对刚果红的吸附性能[J]. 纺织学报, 2024, 45(07): 140-149. |
| [6] | 武守营, 黄启超, 张开封, 张琳萍, 钟毅, 徐红, 毛志平. 铁-三联吡啶配合物活化高碘酸盐体系构建及其对染色废水的催化降解机制[J]. 纺织学报, 2024, 45(06): 105-112. |
| [7] | 张诗雨, 姚依婷, 董晨珊, 张如全, 杨红军, 顾绍金, 黄菁菁, 杜杰毫. 金属有机框架/聚丙烯纤维基复合材料对化学战剂模拟物的快速降解[J]. 纺织学报, 2024, 45(06): 134-141. |
| [8] | 冯颖, 于汉哲, 张宏, 李可心, 马标, 董鑫, 张建伟. 静电纺壳聚糖基纳米纤维的制备及其在水处理中应用研究进展[J]. 纺织学报, 2024, 45(05): 218-227. |
| [9] | 郑康, 龚文丽, 鲍杰, 刘琳. 两性纤维素多孔凝胶球的制备及其动态吸附性能[J]. 纺织学报, 2024, 45(05): 102-112. |
| [10] | 陆瑶瑶, 叶俊涛, 阮承祥, 娄瑾. 二氧化钛/多孔碳纳米纤维复合材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(04): 67-75. |
| [11] | 李方, 张怡立, 王曼, 孟祥周, 沈忱思. 锑污染物对绿藻及蓝藻的急性毒性效应[J]. 纺织学报, 2024, 45(04): 169-179. |
| [12] | 陈荣轩, 孙辉, 于斌. N-TiO2/聚丙烯复合熔喷非织造材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(03): 137-147. |
| [13] | 陈贝, 任李培, 肖杏芳. 铽-金属有机框架改性棉织物的制备及其pH值探测性能[J]. 纺织学报, 2023, 44(12): 123-129. |
| [14] | 孙辉, 崔小港, 彭思伟, 丰江丽, 于斌. 聚乳酸/磁性金属有机框架材料复合熔喷布的制备及其空气过滤性能[J]. 纺织学报, 2023, 44(12): 26-34. |
| [15] | 黄彪, 郑莉娜, 秦妍, 程羽君, 李成才, 朱海霖, 刘国金. 多孔型TiO2微粒的制备及其对离子型染料的吸附[J]. 纺织学报, 2023, 44(11): 167-175. |
|
||