纺织学报 ›› 2025, Vol. 46 ›› Issue (09): 242-249.doi: 10.13475/j.fzxb.20241205502
SU Yi1, ZENG Pengjin1, SUN Fei1,2(
), GUO Yuhai1,2
摘要:
随着全球经济及工业的不断进步与发展,对能源的需求也在快速增长,构建全新、高效、清洁的可持续发展能源体系成为未来研究的主要热点。燃料电池作为集“开源”和“节流”2种功能于一体的优质新能源技术被广泛研究,本文从离子交换膜在燃料电池中的核心作用出发,首先概述了燃料电池用离子交换膜的性能要求,然后介绍了燃料电池用离子交换膜的发展现状,主要包括阳离子交换膜、阴离子交换膜和两性离子交换膜的研究现状及可能面临的问题。通过综合分析离子交换膜的性能和应用场景,总结现阶段研究存在的问题并对未来研究提供可行的解决思路。随着研究的深入和技术的成熟,燃料电池有望在实现“碳达峰、碳中和”目标的过程中发挥关键作用。
中图分类号:
| [1] |
GALLAGHER J. Costing out fuel cells[J]. Nature Energy, 2023, 8(9): 907-907.
doi: 10.1038/s41560-023-01366-w |
| [2] | ABBASI R, SETZLER B P, YAN Y. Material and system development needs for widespread deployment of hydroxide exchange membrane fuel cells in light-duty vehicles[J]. Energy & Environmental Science, 2023, 16(10): 4404-4422. |
| [3] |
CHEN R, XU W, DENG S, et al. Towards the Carnot efficiency with a novel electrochemical heat engine based on the Carnot cycle: thermodynamic considera-tions[J]. Energy, 2023, 284:128577.
doi: 10.1016/j.energy.2023.128577 |
| [4] | MUSTAIN W E, CHATENET M, PAGE M, et al. Durability challenges of anion exchange membrane fuel cells[J]. Energy & Environmental Science, 2020, 13(9): 2805-2538. |
| [5] | 李晓锋. 功能导向的高性能离子交换膜结构设计与性能研究[D]. 合肥: 中国科学技术大学,2023:2-4. |
| LI Xiaofeng. Function-oriented high-performance ion exchange membrane structure design and performance research[D]. Hefei: University of Science and Technology of China, 2023: 2-4. | |
| [6] | 陈志华, 周键, 王三反. 离子交换膜选择透过机理的研究进展[J]. 应用化工, 2021, 50(5): 1366-1371. |
| CHEN Zhihua, ZHOU Jian, WANG Sanfan. Research progress on the selective permeation mechanism of ion exchange membranes[J]. Applied Chemical Industry, 2021, 50(5): 1366-1371. | |
| [7] |
YANDRASITS M A, LINDELL M J, HAMROCK S J. New directions in perfluoroalkyl sulfonic acid-based proton-exchange membranes[J]. Current Opinion in Electrochemistry, 2019, 18: 90-98.
doi: 10.1016/j.coelec.2019.10.012 |
| [8] |
PRYKHODKO Y, FATYEYEVA K, HESPEL L, et al. Progress in hybrid composite Nafion-based membranes for proton exchange fuel cell applic-ation[J]. Chemical Engineering Journal, 2021, 409: 127329.
doi: 10.1016/j.cej.2020.127329 |
| [9] |
KARIMI M B, MOHAMMADI F, HOOSHYARI K. Recent approaches to improve Nafion performance for fuel cell applications: a review[J]. International Journal of Hydrogen Energy, 2019, 44(54): 28919-28938.
doi: 10.1016/j.ijhydene.2019.09.096 |
| [10] |
YE H, HUANG J, XU J J, et al. New membranes based on ionic liquids for PEM fuel cells at elevated temperatures[J]. Journal of Power Sources, 2008, 178(2): 651-660.
doi: 10.1016/j.jpowsour.2007.07.074 |
| [11] |
YAZILI D, MARINI E, SAATKAMP T, et al. Sulfonated poly(phenylene sulfone) blend membranes finding their way into proton exchange membrane fuel cells[J]. Journal of Power Sources, 2023, 563: 232791.
doi: 10.1016/j.jpowsour.2023.232791 |
| [12] |
DEIVANAYAGAM P, RAMANUJAM RAMAMOORTHY A, JAISANKAR S N. Synthesis and characterization of sulfonated poly(arylene ether sulfone)/silicotungstic acid composite membranes for fuel cells[J]. Polymer Journal, 2013, 45(2): 166-172.
doi: 10.1038/pj.2012.102 |
| [13] |
ZENG P, SU Y, HUANG B, et al. Sulfonated poly (ether ether ketone) asymmetrical pore-filling PTFE composite membrane with highly selective for vanadium flow batteries[J]. International Journal of Hydrogen Energy, 2025, 120: 365-373.
doi: 10.1016/j.ijhydene.2025.03.311 |
| [14] |
HUYNH T B N, SONG J, BAE H E, et al. Enhancing proton exchange membrane water electrolysis with a checkered carbon matrix containing Ir-Ru nano-particles[J]. Advanced Energy Materials, 2024, 14(46): 2402179.
doi: 10.1002/aenm.v14.46 |
| [15] |
HUANG L, GUAN J, SUN X, et al. High free volume crosslinked membranes constructed by stereocrosslinker for high-temperature proton-exchange membrane fuel cells[J]. Journal of Membrane Science, 2024, 709: 123100.
doi: 10.1016/j.memsci.2024.123100 |
| [16] |
ELWAN H A, MAMLOUK M, SCOTT K. A review of proton exchange membranes based on protic ionic liquid/polymer blends for polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2021, 484: 229197.
doi: 10.1016/j.jpowsour.2020.229197 |
| [17] |
HARAGIRIMANA A, INGABIRE P B, LIU Y, et al. An effective strategy to enhance the performance of the proton exchange membranes based on sulfonated poly(ether ether ketone)s[J]. International Journal of Hydrogen Energy, 2020, 45(16): 10017-10029.
doi: 10.1016/j.ijhydene.2020.01.180 |
| [18] |
DÖNMEZ G, OKUTAN M, DELIGÖZ H. Blend membranes of sulfonated poly (ether ether ketone) and thermoplastic poly (urethane) for fuel cells[J]. Journal of Polymer Research, 2019, 26(6):133.
doi: 10.1007/s10965-019-1792-7 |
| [19] |
HARAGIRIMANA A, INGABIRE P B, ZHU Y, et al. Four-polymer blend proton exchange membranes derived from sulfonated poly(aryl ether sulfone)s with various sulfonation degrees for application in fuel cells[J]. Journal of Membrane Science, 2019, 583: 209-219.
doi: 10.1016/j.memsci.2019.04.014 |
| [20] |
LIU F, KINGSBURY R S, RECH J J, et al. Effect of osmotic ballast properties on the performance of a concentration gradient battery[J]. Water Res, 2022, 212: 118076.
doi: 10.1016/j.watres.2022.118076 |
| [21] |
WANG S, ZHU T, SHI B, et al. Porous organic polymer with high-density phosphoric acid groups as filler for hybrid proton exchange membranes[J]. Journal of Membrane Science, 2023, 666: 121147.
doi: 10.1016/j.memsci.2022.121147 |
| [22] |
QU E, CHENG G, XIAO M, et al. Composite membranes consisting of acidic carboxyl-containing polyimide and basic polybenzimidazole for high-temperature proton exchange membrane fuel cells[J]. Journal of Materials Chemistry A, 2023, 11(24): 12885-12895.
doi: 10.1039/D2TA08904A |
| [23] | LIU N, BI S, ZHANG Y, et al. Nanofiber-based polymer electrolyte membranes for fuel cells[J]. Carbon Energy, 2025: e677. |
| [24] |
YUZER B, SELCUK H, CHEHADE G, et al. Evaluation of hydrogen production via electrolysis with ion exchange membranes[J]. Energy, 2020, 190: 116420.
doi: 10.1016/j.energy.2019.116420 |
| [25] |
LIANG Z, YANG W, YIN Z, et al. Chlor-alkali membrane cell process for industrial waste salt utilization: fundamentals and challenges[J]. Desalination, 2024, 587: 117921.
doi: 10.1016/j.desal.2024.117921 |
| [26] |
THAKUR A K, MALMALI M. Advances in polymeric cation exchange membranes for electrodialysis: an overview[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108295.
doi: 10.1016/j.jece.2022.108295 |
| [27] |
MISHRA A K, KIM N H, JUNG D, et al. Enhanced mechanical properties and proton conductivity of Nafion-SPEEK-GO composite membranes for fuel cell applications[J]. Journal of Membrane Science, 2014, 458: 128-135.
doi: 10.1016/j.memsci.2014.01.073 |
| [28] |
LIU L, LI Q, DAI J, et al. A facile strategy for the synthesis of guanidinium-functionalized polymer as alkaline anion exchange membrane with improved alkaline stability[J]. Journal of Membrane Science, 2014, 453: 52-60.
doi: 10.1016/j.memsci.2013.10.054 |
| [29] | 李金晟. 基于聚苯并咪唑和聚芳醚酮阴离子交换膜的制备及其性能研究[D]. 长春: 长春工业大学, 2020:10-11. |
| Li Jinsheng. Preparation and performance study of anion exchange membrane based on polybenzimidazole and polyaryletherketone[D]. Changchun: Changchun University of Technology, 2020:10-11. | |
| [30] |
HUANG J, YU Z, TANG J, et al. A review on anion exchange membranes for fuel cells: anion-exchange polyelectrolytes and synthesis strategies[J]. International Journal of Hydrogen Energy, 2022, 47(65): 27800-27820.
doi: 10.1016/j.ijhydene.2022.06.140 |
| [31] |
DAS G, CHOI J-H, NGUYEN P K T, et al. Anion exchange membranes for fuel cell application: a review[J]. Polymers, 2022, 14(6): 1197.
doi: 10.3390/polym14061197 |
| [32] | 张国良, 于泽, 张秋根, 等. 侧链型氟掺杂聚 (对三联苯哌啶) 阴离子交换膜的制备[J]. 膜科学与技术, 2024, 44(6):6-8. |
| ZHANG Guoliang, YU Ze, ZHANG Qiugen, et al. Preparation of side chain fluorine-doped poly (p-terphenylpiperidine) anion exchange membrane[J]. Membrane Science & Technology, 2024, 44(6):6-8. | |
| [33] |
ZHANG M, LIU J, WANG Y, et al. Highly stable anion exchange membranes based on quaternized polypropylene[J]. Journal of Materials Chemistry A, 2015, 3(23): 12284-12296.
doi: 10.1039/C5TA01420D |
| [34] |
DONG J, LI H, REN X, et al. Anion exchange membranes of bis-imidazolium cation crosslinked poly(2,6-dimethyl-1,4-phenylene oxide) with enhanced alkaline stability[J]. International Journal of Hydrogen Energy, 2019, 44(39): 22137-22145.
doi: 10.1016/j.ijhydene.2019.06.130 |
| [35] |
PELTIER C R, YOU W, FACKOVIC VOLCANJK D, et al. Quaternary ammonium-functionalized polyethylene-based anion exchange membranes: balancing performance and stability[J]. ACS Energy Letters, 2023, 8(5): 2365-2372.
doi: 10.1021/acsenergylett.3c00319 |
| [36] |
GONG S, BAI L, LI L, et al. Block copolymer anion exchange membrane containing polymer of intrinsic microporosity for fuel cell application[J]. International Journal of Hydrogen Energy, 2021, 46(2): 2269-2281.
doi: 10.1016/j.ijhydene.2020.10.068 |
| [37] |
SANA B, DAS A, SHARMA M, et al. Alkaline anion exchange membrane from alkylated polybenzimid-azole[J]. ACS Applied Energy Materials, 2021, 4(9): 9792-9805.
doi: 10.1021/acsaem.1c01862 |
| [38] | LEE K H, CHU J Y, KIM A R, et al. Fabrication of high-alkaline stable quaternized poly(arylene ether ketone)/graphene oxide derivative including zwitterion for alkaline fuel cells[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(26): 8824-8834. |
| [39] |
OGIHARA N, NAGAYA K, YAMAGUCHI H, et al. Direct capacity regeneration for spent Li-ion batteries[J]. Joule, 2024, 8(5): 1364-1379.
doi: 10.1016/j.joule.2024.02.010 |
| [40] |
KU A Y, ALONSO E, EGGERT R, et al. Grand challenges in anticipating and responding to critical materials supply risks[J]. Joule, 2024, 8(5): 1208-1223.
doi: 10.1016/j.joule.2024.03.001 |
| [41] | 孙丽娜. 两性离子磺化聚醚砜复合质子交换膜的制备与性能研究[D]. 南昌: 南昌大学, 2012:27-28. |
| SUN Lina. Preparation and performance study of zwitterionic sulfonated polyethersulfone composite proton exchange membrane[D]. Nanchang: Nanchang University, 2012:27-28. | |
| [42] |
NI J, HU M, LIU D, et al. Synthesis and properties of highly branched polybenzimidazoles as proton exchange membranes for high-temperature fuel cells[J]. Journal of Materials Chemistry C, 2016, 4(21): 4814-4821.
doi: 10.1039/C6TC00862C |
| [43] | 徐涛. 有机-无机杂化质子交换膜质子传递特性仿生强化的研究[D]. 天津: 天津大学, 2012:18-22. |
| XU Tao. Research on biomimetic enhancement of proton transfer characteristics of organic-inorganic hybrid proton exchange membrane[D]. Tianjin: Tianjin University, 2012:18-22. | |
| [44] |
CHEN L, SUN L, ZENG R, et al. Cross-linked zwitterionic polyelectrolytes based on sulfonated poly(ether sulfone) with high proton conductivity for direct methanol fuel cells[J]. Journal of Power Sources, 2012, 212: 13-21.
doi: 10.1016/j.jpowsour.2012.04.008 |
| [1] | 张鑫伟, 李港华, 李林蔚, 刘红, 田明伟, 王航. 基于聚偏氟乙烯/聚多巴胺/UiO-66纳米纤维的复合质子交换膜制备及其性能[J]. 纺织学报, 2025, 46(02): 35-42. |
| [2] | 王利媛, 康卫民, 庄旭品, 鞠敬鸽, 程博闻. 磺化聚醚砜纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(11): 19-26. |
| [3] | 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13. |
| [4] | 王栋 卿星 蒋海青 钟卫兵 李沐芳. 纤维材料与可穿戴技术的融合与创新[J]. 纺织学报, 2018, 39(05): 150-154. |
|
||