纺织学报 ›› 2019, Vol. 40 ›› Issue (07): 64-70.doi: 10.13475/j.fzxb.20180601607

• 纺织工程 • 上一篇    下一篇

芳纶/超高分子量聚乙烯织物增强聚氨酯夹芯复合材料制备及其力学性能

吴利伟1,2, 王伟1, 林佳弘1,3,4, 姜茜1,2   

  1. 1. 天津工业大学 纺织科学与工程学院, 天津 300387
    2. 天津工业大学 教育部与天津市共建先进复合材料重点实验室, 天津 300387
    3. 闽江学院 海洋学院, 福建 福州 350108
    4. 台湾逢甲大学 纤维与复合材料学系, 台湾 40724
  • 收稿日期:2018-06-01 修回日期:2019-04-02 出版日期:2019-07-15 发布日期:2019-07-25
  • 作者简介:吴利伟(1984-),男,讲师,博士。主要研究方向为柔性缓冲复合材料。E-mail: wuliwei@tjpu.edu.cn
  • 基金资助:
    国家自然科学基金项目(11502163);国家自然科学基金项目(11702187);天津市自然科学基金项目(17JCQNJC03000);天津市自然科学基金项目(16JCZDJC36600);天津市教委科研计划项目(2017ZD05)

Preparation and mechanical properties of aramid/ ultra-high molecular weight polyethylene fabric reinforced polyurethane sandwich composite

WU Liwei1,2, WANG Wei1, LIN Jiahorng1,3,4, JIANG Qian1,2   

  1. 1. School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
    2. Tianjin and Ministry of Education Key Laboratory of Advanced Textile Composite Materials, Tianjin Polytechnic University, Tianjin 300387, China
    3. Ocean College, Minjiang University, Fuzhou, Fujian 350108, China
    4. Department of Fiber and Composite Materials, Feng Chia University, Taiwan 40724, China
  • Received:2018-06-01 Revised:2019-04-02 Online:2019-07-15 Published:2019-07-25

摘要:

为开发出一种柔性防护材料,采用超高分子量聚乙烯纤维(UHMWPE)与芳纶制备的平纹织物作为增强面板,软式聚氨酯(PU)作为芯材,利用纺织技术与一体发泡技术相结合制备了具有良好缓冲性能的夹芯结构柔性复合材料。同时,选用面密度相同的锦纶非织造布及玄武岩平纹布作为增强面板对比材料,对3类夹芯复合材料进行静态与动态力学性能测试。结果表明:芳纶/UHMWPE织物增强夹芯复合材料的力学性能优良,经向拉伸断裂强力为1 930 N,断裂伸长率为5.8%;纬向拉伸断裂强力为1 744 N,断裂伸长率为6.5%;在7.5 mm处进入压实阶段,压缩形变为93%;冲击破坏强力为1 260 N, 吸收的总能量为13.4 J,能量密度为4.95 J/g;芳纶/UHMWPE织物增强夹芯复合材料在保证质轻的基础上,具有良好的能量吸收效果。

关键词: 超高分子量聚乙烯纤维, 芳纶, 聚氨酯, 夹芯复合材料, 力学性能

Abstract:

By applying ultra-high molecular weight polyethylene fiber (UHMWPE) and aramid as reinforced fabric panels and flexible polyurethane (PU) as core, a sandwich flexible composite with good cushioning property was developed by textile technique and one-step foaming process. PU composites reinforced by nylon nonwoven and basalt plain weave fabric were prepared as control group, and static and dynamic mechanical testing were conducted on all three composites. The results show aramid/UHMWPE plain weave reinforced sandwich composite has excellent mechanical property. The tensile strengths and elongation at breaks of aramid/UHMWPE plain weave reinforced sandwich composite in longitudinal and horizontal direction are 1 930 N, 1 744 N, 5.8% and 6.5%, respectively. The sandwich composite is compact when the compressive displacement reaches to 7.5 mm, and the compressive deformation is 93%. Impact strength of aramid/UHMWPE plain weave reinforced sandwich composite is 1 260 N with absorbed energy of 13.4 J and energy density of 4.95 J/g, proving good energy absorption capability on the basis of lightweight.

Key words: ultra-high molecular weight polyethylene fiber, aramid, polyurethane, sandwich composite, mechanical property

中图分类号: 

  • TB332

表1

纱线基本参数"

材料 生产厂家 线密度/
tex
拉伸
强度/
MPa
拉伸
模量/
GPa
断裂
伸长
率/%
芳纶短纤纱 仪征化纤有限责任公司 58 1 020 65 2.4
超高分子量聚乙烯纤维 连云港神特新材料有限公司 63 2 000 80 3.1

表2

织物基本参数"

材料 密度/
(根·(10 cm)-1)
断裂强力/N 面密度/
(g·m-2)
厚度/
mm
经密 纬密 经向 纬向
芳纶/UHMWPE平纹织物 120 110 657.3 577.1 176 0.4
玄武岩平纹
织物
100 100 876.0 907.0 330 0.4
锦纶非织造布 - - 96.6 43.3 180 1.5

图1

3类织物增强聚氨酯夹芯复合材料试样拉伸断裂正视图与侧视图 注:1#为正视图;2#为侧视图。"

图2

3类织物增强聚氨酯夹芯复合材料试样拉伸载荷-位移曲线"

图3

夹芯复合材料中聚氨酯内部形貌及孔径分布情况"

图4

3类织物增强聚氨酯夹芯复合材料压缩载荷-位移曲线"

图5

锦纶非织造布夹芯复合材料与芳纶/UHMWPE夹芯复合材料冲击后破坏结果"

图6

锦纶非织造布夹芯复合材料与芳纶/UHMWPE夹芯复合材料冲击载荷-位移曲线"

图7

芳纶/UHMWPE夹芯复合材料与玄武岩夹芯复合材料试样破坏结果"

图8

芳纶/UHMWPE夹芯复合材料与玄武岩夹芯复合材料载荷-位移曲线"

[1] ENGELS H W, PIRKL H G, ALBERS R , et al. Polyurethanes: versatile materials and sustainable problem solvers for today's challenges[J]. Angewandte Chemie, 2013,52(36):9422-9441.
doi: 10.1002/anie.201302766 pmid: 23893938
[2] MOHAMED M, ANANDAN S, HUO Z , et al. Manufacturing and characterization of polyurethane based sandwich composite structures[J]. Composite Structures, 2015,123:169-17.
[3] 方路平, 陆春, 陈平 , 等. 3种复合材料夹芯结构在弯曲载荷下破坏行为研究[J]. 玻璃钢/复合材料, 2016(4):36-40.
FANG Luping, LU Chun, CHEN Ping , et al. Study on damage behavior of three kinds of composite sandwich structure panel under bending load[J]. Fiber Reinforced Plastics Composites, 2016(4):36-40.
[4] TUWAIR H, HOPKINS M, VOLZ J , et al. Evaluation of sandwich panels with various polyurethane foam-cores and ribs[J]. Composites Part B, 2015,79:262-276.
[5] GARRIDO M, CORREIA J R, BRANCO F A , et al. Creep behaviour of sandwich panels with rigid polyurethane foam core and glass-fibre reinforced polymer faces: experimental tests and analytical modelling[J]. Journal of Composite Materials, 2014,48(18):2237-2249.
[6] ZHANG J, SUPERNAK P, MUELLER-ALANDER S , et al. Improving the bending strength and energy absorption of corrugated sandwich composite structure[J]. Materials & Design, 2013,52(24):767-773.
[7] AMIR F, TAREK S . Flexural performance of sandwich panels comprising polyurethane core and GFRP skins and ribs of various configurations[J]. Composite Structures, 2010,92(12):2927-2935.
[8] GHALAMICHOOBAR M, SADIGHI M . Investigation of high velocity impact of cylindrical projectile on sandwich panels with fiber-metal laminates skins and polyurethane core[J]. Aerospace Science & Technology, 2014,32(1):142-152.
[9] ATAS C, POTOGLU U . The effect of face-sheet thickness on low-velocity impact response of sandwich composites with foam cores[J]. Journal of Sandwich Structures & Materials, 2016,18(2):215-228.
[10] 薛启超, 邹广平, 李佳 , 等. 基于裂纹开裂角度的夹层板层间开裂[J]. 复合材料学报, 2017(8):1870-1877.
XUE Qichao, ZOU Guangping, LI Jia , et al. Debonding analysis for sandwich plates based on crack opening angle[J]. Acta Materiae Compositae Sinica, 2017(8):1870-1877.
[11] 武晓东, 夏凡, 吴晓青 . 不同纤维面层对泡沫夹层复合材料低速冲击性能的影响[J]. 纤维复合材料, 2010,27(4):8-11.
WU Xiaodong, XIA Fan, WU Xiaoqing . Work on low-velocity impact properties of foam sandwich composites with various face sheets[J]. Fiber Composites, 2010,27(4):8-11.
[1] 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7.
[2] 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14.
[3] 张祝辉, 张典堂, 钱坤, 徐阳, 陆健. 广角机织物的织造工艺及其偏轴拉伸力学性能[J]. 纺织学报, 2020, 41(08): 27-31.
[4] 马飞飞. 离散树脂成型复合材料的防刺与服用性能[J]. 纺织学报, 2020, 41(07): 67-71.
[5] 刘稀, 王冬, 张丽平, 李敏, 付少海. 低折射率树脂对原液着色粘胶纤维结构和性能的影响[J]. 纺织学报, 2020, 41(07): 9-14.
[6] 刘国金, 石峰, 陈新祥, 张国庆, 周岚. 聚氨酯/ 相变蜡蓄热调温功能整理剂的制备及其在棉织物上的应用[J]. 纺织学报, 2020, 41(07): 129-134.
[7] 王亚停, 赵家琪, 王碧佳, 冯雪凌, 钱国春, 隋晓锋. 超细纤维合成革的染色与功能整理研究进展[J]. 纺织学报, 2020, 41(07): 188-196.
[8] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[9] 许黛芳. 磷酸改性芳纶对聚氨酯硬质泡沫阻燃抑烟性能的影响[J]. 纺织学报, 2020, 41(05): 30-37.
[10] 胡铖烨, 缪润伍, 韩潇, 洪剑寒, GIL Ignacio. 聚乙烯醇对芳纶复合纱聚苯胺导电层耐久性影响[J]. 纺织学报, 2020, 41(04): 91-97.
[11] 吴颖欣, 胡铖烨, 周筱雅, 韩潇, 洪剑寒, GIL Ignacio. 柔性可穿戴氨纶/ 聚苯胺/ 聚氨酯复合材料的应变传感性能[J]. 纺织学报, 2020, 41(04): 21-25.
[12] 王宗乾, 杨海伟, 周剑, 李长龙. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(04): 9-14.
[13] 岳程飞, 丁长坤, 李璐, 程博闻 . 碳化二亚胺/ 羟基丁二酰亚胺交联改性胶原蛋白纤维制备及其性能[J]. 纺织学报, 2020, 41(03): 1-7.
[14] 李国庆, 李平平, 刘瀚霖, 李妮. 聚丙烯腈/ 聚氨酯透明膜的制备及其性能[J]. 纺织学报, 2020, 41(03): 20-25.
[15] 李聃阳, 王瑞, 刘星, 张淑洁, 夏兆鹏, 阎若思, 代二庆. 剪切增稠液对不同结构芳纶织物防刺性能的影响[J]. 纺织学报, 2020, 41(03): 106-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!