纺织学报 ›› 2020, Vol. 41 ›› Issue (03): 15-19.doi: 10.13475/j.fzxb.20190408306

• 纤维材料 • 上一篇    下一篇

氧化石墨烯协同二硫代焦磷酸酯阻燃粘胶纤维的制备及其性能

马君志1,2, 王冬1, 付少海1()   

  1. 1.生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
    2.恒天海龙(潍坊)新材料有限责任公司, 山东 潍坊 261100
  • 收稿日期:2019-04-30 修回日期:2019-12-16 出版日期:2020-03-15 发布日期:2020-03-27
  • 通讯作者: 付少海
  • 作者简介:马君志(1976—),男,博士生。主要研究方向为阻燃再生纤维素纤维。
  • 基金资助:
    国家重点研发计划项目(2017YFB0309004);江苏省自然科学基金项目(BK20190613)

Preparation and properties of flame-retardant viscose fiber/dithiopyrophosphate incorporated with graphene oxide

MA Junzhi1,2, WANG Dong1, FU Shaohai1()   

  1. 1. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
    2. CHTC Helon (Weifang) New Materials Co., Ltd., Weifang, Shandong 261100, China
  • Received:2019-04-30 Revised:2019-12-16 Online:2020-03-15 Published:2020-03-27
  • Contact: FU Shaohai

摘要:

为提高粘胶/二硫代焦磷酸酯(VF/DDPS)纤维的阻燃及力学性能,以氧化石墨烯(GO)作为协同阻燃剂添加到VF/DDPS基体中,通过湿法纺丝工艺制得VF/DDPS/GO复合纤维。借助热重分析仪、极限氧指数仪、微型量热仪和单丝强力仪研究GO对VF/DDPS复合纤维热性能、阻燃性能和力学性能的影响。结果表明:与VF/DDPS纤维相比,当GO质量分数为2.0%时,VF/DDPS/GO复合纤维的残炭量从20.0%增加到29.7%,极限氧指数从27.8%升高到29.1%,热释放速率峰值从141.5 W/g降低到99.4 W/g,干、湿断裂强度分别从2.08、0.96 cN/dtex增加到2.20、1.17 cN/dtex;GO的添加可提高VF/DDPS炭渣的石墨化程度和致密度,增强炭渣的热质阻隔作用。

关键词: 粘胶纤维, 氧化石墨烯, 二硫代焦磷酸酯, 阻燃纤维, 阻燃剂

Abstract:

To improve the flame-retardant and mechanical properties of viscose fiber/bisneopentyl glycol dithiopyrophosphate (VF/DDPS), graphene oxide (GO) was incorporated into VF/DDPS matrix as synergistic flame retardant to prepare VF/DDPS/GO composite fiber through wetting spinning. Using thermogravimetry, limiting oxygen index tester, microscale combustion calorimeter and single fiber tensile tester as performance indices, the effect of GO on the thermal, flame-retardant and mechanical properties of VF/DDPS composite fiber were studied. The results show that compared to VF/DDPS, when incorporating 2.0% GO, the char residues of VF/DDPS/GO composite fiber increases from 20.0% to 29.7%, limiting oxygen index rises from 27.8% to 29.1%, peak heat release rate decreases from 141.5 to 99.4 W/g and dry/wet breaking strength increases from 2.08,0.96 cN/dtex to 2.20,1.17 cN/dtex. It is concluded that GO could enhance the graphitic degree and compactness of char residues, which strengthens the barrier action of heat and mass.

Key words: viscose fiber, graphene oxide, bisneopentyl glycol dithiopyrophosphate, flame-retardant fiber, flame-retardant agent

中图分类号: 

  • TS102.6

表1

阻燃粘胶纤维的组成成分"

样品
编号
α-纤维素
质量分数
DDPS对α-纤维素
质量分数
GO对α-纤维素
质量分数
1# 100 0 0.0
2# 100 18 0.0
3# 100 18 0.5
4# 100 18 1.0
5# 100 18 1.5
6# 100 18 2.0

图1

GO质量分数为2.0%时粘胶纤维的表面和截面形貌"

图2

不同组分含量的粘胶纤维的TG和DTG曲线"

图3

不同组分含量的粘胶纤维的LOI值"

图4

不同组分含量的粘胶纤维的热释放速率曲线"

图5

粘胶纤维炭渣的拉曼光谱图"

图6

粘胶纤维炭渣的扫描电镜照片"

表2

不同组分含量的粘胶纤维的力学性能"

样品
编号
断裂强度/(cN·dtex-1) 断裂
伸长率/%
湿
1# 2.26 1.14 19.2
2# 2.08 0.96 19.4
3# 2.17 1.06 19.8
4# 2.23 1.14 18.5
5# 2.29 1.26 18.1
6# 2.20 1.17 17.6
[1] WANG Dong, MU Xiaowei, CAI Wei, et al. Constructing phosphorus, nitrogen, silicon-co-contained boron nitride nanosheets to reinforce flame retardant properties of unsaturated polyester resin[J]. Composites Part A: Applied Science and Manufacturing, 2018,109:546-554.
[2] WANG Dong, XING Weiyi, SONG Lei, et al. Space-confined growth of defect-rich molybdenum disulfide nanosheets within graphene: application in the removal of smoke particles and toxic volatiles[J]. ACS Applied Materials & Interfaces, 2016,8(50):34735-34743.
[3] WANG Dong, ZHOU Keqing, YANG Wei, et al. Surface modification of graphene with layered molybdenum disulfide and their synergistic reinforcement on reducing fire hazards of epoxy resins[J]. Industrial & Engineering Chemistry Research, 2013,52(50):17882-17890.
[4] GUO Yuqiang, BAO Chenlu, SONG Lei, et al. In situ polymerization of graphene, graphite oxide, and functionalized graphite oxide into epoxy resin and comparison study of on-the-flame behavior[J]. Industrial & Engineering Chemistry Research, 2011,50(13):7772-77783.
[5] GAVGANI J N, ADELNIA H, GUDARZI M M. Intumescent flame retardant polyurethane/reduced graphene oxide composites with improved mechanical, thermal, and barrier properties[J]. Journal of Materials Science, 2014,49(1):243-254.
[6] KRISHNAMOORTHY K, VEERAPANDIAN M, YUN K, et al. The chemical and structural analysis of graphene oxide with different degrees of oxidation[J]. Carbon, 2003,53:38-49.
[7] HUANG H, REN P, CHEN J, et al. High barrier graphene oxide nanosheet/poly(vinyl alcohol) nanocomposite films[J]. Journal of Membrane Science, 2012,409:156-163.
[8] 程博闻. 环境友好型阻燃纤维素纤维的阻燃性能及机理研究[J]. 天津工业大学学报, 2005,24(1):1-3.
CHENG Bowen. Study on properties and mechanism of eco-friendly fire-retardant cellulose[J]. Journal of Tiangong University, 2005,24(1):1-3.
[9] 姚莉丽. 氧化石墨烯/纤维素复合材料的制备和性能[D]. 上海:东华大学, 2014: 10-15.
YAO Lili. The preparation and properties of graphene oxide/cellulose composites[D]. Shanghai: Donghua University, 2014: 10-15.
[10] 陈南, 钟贵林, 张国峰. 石墨烯在聚合物阻燃材料中的应用及作用机理[J]. 应用化学, 2018,35(3):308-309.
CHEN Nan, ZHONG Guilin, ZHANG Guofeng. Application and interaction mechanism of graphene in polymer flame retardant materials[J]. Chinese Journal of Applied Chemistry, 2018,35(3):308-309.
[11] 李德凯, 李爱花, 刁玲博, 等. 纳米级炭黑在不同热处理温度下的结构研究[J]. 化工科技, 2014,22(4):1-4.
LI Dekai, LI Aihua, DIAO Lingbo, et al. Studies on the structure of nano-carbon black material at different heat-treatment temperatures[J]. Science & Technology in Chemical Industry, 2014,22(4):1-4.
[12] 张宪胜, 曲文广, 田明伟, 等. 石墨烯粘胶复合纤维的性能研究[J]. 棉纺织技术, 2015,43(6):15-19.
ZHANG Xiansheng, QU Wenguang, TIAN Mingwei, et al. Property study of graphene viscose composite fiber[J]. Cotton Textile Technology, 2015,43(6):15-19.
[13] 曲丽君, 田明伟, 迟淑丽, 等. 部分石墨烯复合纤维与制品的研发[J]. 纺织学报, 2016,37(10):171-173.
QU Lijun, TIAN Mingwei, CHI Shuli, et al. Research and development of graphene composite fibers and fabrics[J]. Journal of Textile Research, 2016,37(10):171-173.
[1] 马君志, 葛红, 王冬, 付少海. 溶胶-凝胶法改性阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(01): 10-15.
[2] 肖梦苑, 周新科, 张佳悦, 任元林. 木质素生物质阻燃剂及其应用研究进展[J]. 纺织学报, 2020, 41(12): 182-188.
[3] 李亮, 刘静芳, 胡泽栋, 耿长军, 刘让同. 涤纶织物的氧化石墨烯负载及其抗静电性能[J]. 纺织学报, 2020, 41(09): 102-107.
[4] 刘稀, 王冬, 张丽平, 李敏, 付少海. 低折射率树脂对原液着色粘胶纤维结构和性能的影响[J]. 纺织学报, 2020, 41(07): 9-14.
[5] 赵芷芪, 李秋瑾, 孙月静, 巩继贤, 李政, 张健飞. 磁性氧化石墨烯/聚丙烯胺盐酸盐微胶囊在染料吸附中的应用[J]. 纺织学报, 2020, 41(07): 109-116.
[6] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/ 聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[7] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[8] 王建坤, 蒋晓东, 郭晶, 杨连贺. 功能化氧化石墨烯吸附材料的研究进展[J]. 纺织学报, 2020, 41(04): 167-173.
[9] 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100-105.
[10] 罗佳妮, 李丽君, 张晓思, 邹汉涛, 刘雪婷. 氧化石墨烯掺杂TiO2改性活性炭纤维[J]. 纺织学报, 2020, 41(01): 8-14.
[11] 易领, 张何, 傅昕, 李雯. 石墨烯基锆钛复合材料改性棉织物的制备及其远红外发射性能 [J]. 纺织学报, 2020, 41(01): 102-109.
[12] 李阵群, 许多, 魏春艳, 钱永芳, 吕丽华. 棉秆皮纤维素/ 氧化石墨烯纤维的制备及其力学性能和吸附性能 [J]. 纺织学报, 2020, 41(01): 15-20.
[13] 孙玉发, 周向东. 棉用新型含磷氮阻燃剂的合成及其应用[J]. 纺织学报, 2019, 40(12): 79-85.
[14] 苗苗, 王晓旭, 王迎, 吕丽华, 魏春艳. 氧化石墨烯接枝聚丙烯非织造布的制备及其抗静电性[J]. 纺织学报, 2019, 40(11): 125-130.
[15] 陈咏, 王颖, 何峰, 王静, 朱志国, 董振峰, 王锐. 共聚型磷系阻燃聚酯聚合反应动力学及其性能[J]. 纺织学报, 2019, 40(10): 13-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!