纺织学报 ›› 2020, Vol. 41 ›› Issue (06): 27-35.doi: 10.13475/j.fzxb.20190101809

• 纤维材料 • 上一篇    下一篇

镀铜碳纤维丝束细观耐磨性的有限元仿真模拟

戴鑫1,2,3, 李晶1,2,3(), 陈晨1,4   

  1. 1.西安工程大学 机电工程学院, 陕西 西安 710048
    2.西安市现代智能纺织装备重点实验室, 陕西 西安 710048
    3.江苏永钢集团有限公司 制造管理部, 江苏 张家港 215628
    4.绍兴市柯桥区西纺纺织产业创新研究院, 浙江 绍兴 312065
  • 收稿日期:2019-01-10 修回日期:2020-03-14 出版日期:2020-06-15 发布日期:2020-06-28
  • 通讯作者: 李晶
  • 作者简介:戴鑫(1995—),男,硕士生。主要研究方向为机械工程软件的应用。
  • 基金资助:
    中国纺织工业联合会科技指导性项目(2019006);西安市现代智能纺织装备重点实验室项目(2019220614SYS021CG043)

Finite element simulation on wear resistance of copper-plated carbon fiber tows

DAI Xin1,2,3, LI Jing1,2,3(), CHEN Chen1,4   

  1. 1. School of Mechanical and Electrical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Xi'an Key Laboratory of Modern Intelligent Textile Equipment, Xi'an, Shaanxi 710048, China
    3. Manufacturing Management Department of Jiangsu Yonggang Group Co., Ltd., Zhangjiagang, Jiangsu 215628, China
    4. Shaoxing Keqiao West-Tex Textile Industry Innovative Institute, Shaoxing, Zhejiang 312065, China
  • Received:2019-01-10 Revised:2020-03-14 Online:2020-06-15 Published:2020-06-28
  • Contact: LI Jing

摘要:

针对碳纤维丝束在织造过程中易出现断经和起毛的问题,提出在碳纤维丝束表面镀铜以提高丝束耐磨性。首先在Solidworks中建立树脂基碳纤维丝束细观模型,利用ABAQUS对开口时碳纤维丝束与镀铜综丝眼之间的滑动摩擦损伤进行仿真模拟,并运用纤维复合材料渐进损伤失效模型进行损伤演化分析;将树脂基碳纤维丝束改为镀铜碳纤维丝束,通过拉伸模拟验证了丝束模型的可行性,运用Archard模型对镀铜碳纤维丝束进行耐磨性仿真模拟;最后在ABAQUS中模拟仿真纤维的硬挺度。结果表明:当镀铜层厚度为1.0 μm时,仿真预测的镀铜碳纤维丝束耐磨次数约是上浆碳纤维丝束(上浆率为0.32%、浆液质量分数为3%)耐磨次数的2倍;在碳纤维丝束表面镀0.5~1.0 μm的铜层时具有良好的可织性。

关键词: 碳纤维, 织造, 开口损伤, 镀铜碳纤维织物, 耐磨性, 有限元分析

Abstract:

In order to improve the abrasion resistance of carbon fiber tow, copper plating on the surface of carbon fiber tow was proposed. Firstly, a mesoscopic model for resin-based carbon fiber tow was established in Solidworks, and the sliding friction damage between a carbon fiber tow and a copper-plated heald wire eye during shedding was simulated using ABAQUS, and the progressive damage failure model of fiber composite was used for the damage evolution analysis. Then the resin-based carbon fiber tow was changed to copper-plated carbon fiber tow, and the feasibility of the model was verified by simulation of tensile loading. The wear resistance of copper-plated carbon fiber tow was simulated by Archard model. Finally, the stiffness of the fiber tow was simulated using ABAQUS. The results show that when the thickness of copper plating layer is 1.0 μm, the wear resistance predicted by the simulation of a copper-plated carbon fiber tow is about twice that of a carbon fiber tow with a sizing rate of 0.32% and a slurry mass fraction of 3%. Carbon fiber tow plated with 0.5-1 μm copper layer demonstrates optimal weavability.

Key words: carbon fiber, weaving, opening damage, copper-plated carbon fiber fabric, wear resistance, finite element analysis

中图分类号: 

  • TS155

图1

镀铜综眼与镀铜碳纤维丝束三维模型图"

图2

镀铜碳纤维丝束细观模型"

表1

镀铜碳纤维丝束细观模型几何参数"

长度
L
宽度
W
高度
H
镀铜厚度
d1 d2 d3 d4
75.0 20.8~36.0 5.2~9.0 0.1 0.5 1.0 2.0

图3

丝束细观模型拉伸验证应力云图"

图4

渐进损伤模型的结构"

图5

有限元前处理结果"

图6

有限元应力云图"

图7

碳纤维的渐进损伤"

图8

开口运动时碳纤维丝束交汇时的示意图"

图9

镀铜丝束网格划分模型"

图10

模型边界条件的设置"

图11

铜模磨损区域"

图12

磨损有限元仿真流程图"

图13

磨损应力云图"

图14

镀铜厚度与耐磨次数的关系"

图15

各类纤维单丝硬挺度比较"

图16

各类纤维单丝顶点弯曲位移与载荷关系"

[1] 杨建恒, 侯建荣, 韩笑. 国产碳纤维织物织造工艺技术探讨[J]. 高科技纤维与应用, 2012,37(4):35-40.
YANG Jianheng, HOU Jianrong, HAN Xiao. Discuss on domestic carbon fiber fabric weaving technology[J]. Hi-Tech Fiber & Application, 2012,37(4):35-40.
[2] 宋娃丽, 庞旭, 杜书亮. 碳纤维板材加固梁式桥应用研究[J]. 河北工业大学学报, 2018,47(2):85-89.
SONG Wali, PANG Xu, DU Shuliang. Research on application of strengthening beam bridge with carbon fiber plates[J]. Journal of Hebei University of Technology, 2018,47(2):85-89.
[3] SHARMA M, GAO S I, SHARMA H, et al. Carbon fiber surfaces and composite interphases[J]. Composites Science and Technology, 2014,102(6):35-50.
[4] 张元, 李建利, 张新元, 等. 碳纤维织物的特点及应用[J]. 棉纺织技术, 2014,42(5):74-77.
ZHANG Yuan, LI Jianli, ZHANG Xinyuan, et al. Characteristic and application of carbon fiber fabric[J]. Cotton Textile Technology, 2014,42(5):74-77.
[5] SAFONOV P E, LEVAKOVA N M, YUKHIN S S. Evaluation of the industrial processability of high-strength and high-modulus yarns in weaving, taking into account abrasion resistance[J]. Fibre Chemistry, 2016,47(5):397-402.
[6] 李嘉禄, 申宏旋, 毛丽贺. 上浆浓度对碳纤维缝线拉伸和耐磨性能的影响[J]. 天津工业大学学报, 2017,36(5):27-31.
LI Jialu, SHEN Hongxuan, MAO Lihe. Effects of sizing concentration on tensile strength and wear resistance of carbon fiber suture line[J]. Journal of Tiangong University, 2017,36(5):27-31.
[7] 刘千, 肇研, 段跃新, 等. 捻度对缝合线浸润特性的影响[J]. 北京航空航天大学学报, 2012,38(9):1267-1270.
LIU Qian, ZHAO Yan, DUAN Yuexin, et al. Effect of twist on permeability of the sewing thread[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012,38(9):1267-1270.
[8] 杨洁. 织造中碳纤维的摩擦磨损行为研究[D]. 天津:天津工业大学, 2019: 35-46.
YANG Jie. Research on friction and wear behavior of carbon fiber in weaving[D]. Tianjin: Tiangong University, 2019: 35-46.
[9] 王荣荣, 马崇启, 黄故. 丙纶/玻璃纤维包芯纱的研制[J]. 玻璃钢/复合材料, 2007(3):41-44.
WANG Rongrong, MA Chongqi, HUANG Gu. Investigation of polypropylene/glass core spun yarn[J]. Fiber Reinforced Plastics/Composites, 2007(3):41-44.
[10] 李瑛慧, 谢春萍, 刘新金. 三原组织织物拉伸力学性能有限元仿真[J]. 纺织学报, 2017,38(11):41-47.
LI Yinghui, XIE Chunping, LIU Xinjin. Finite element simulation on tensile mechanical properties of three-elementary weave fabric[J]. Journal of Textile Research, 2017,38(11):41-47.
[11] 马燕颖. 纤维增强复合材料结构损伤的数值模拟研究[D]. 南京:南京理工大学, 2016: 13-25.
MA Yanying. Numerical simulation of structural damage of fiber reinforced composites[D]. Nanjing: Nanjing University of Science and Technology, 2016: 13-25.
[12] HEGADEKATTE V, HUBER N, KRAFT O. Finite element based simulation of dry sliding wear[J]. Modelling and Simulation in Materials Science and Engineering, 2005,13(1):57-75.
[13] TELLISKIVI T. Simulation of wear in a rolling-sliding contact by a semi-winkler model and the Archard's wear law[J]. Wear, 2004,256(7/8):817-831.
doi: 10.1016/S0043-1648(03)00524-6
[14] FANTOS G K, ALIABADI M H. Wear simulation using an incremental sliding boundary element method[J]. Wear, 2006,260(9):1119-1128.
[15] FLODIN A, SÖREN A. Simulation of mild wear in spur gears[J]. Wear, 1997,207(1/2):16-23.
[16] GAHR K H Z. Modelling of two-body abrasive wear[J]. Wear, 1988,124(1):87-103.
[1] 马沙沙, 王俊勃, 雒千, 思芳, 杨敏鸽, 陈宁波, 张小峰, 李博. 镍-磷-纳米碳化硅-聚四氟乙烯化学复合镀对纺纱钢丝圈寿命的影响[J]. 纺织学报, 2020, 41(12): 151-156.
[2] 张倩, 毛吉富, 吕璐瑶, 徐仲棉, 王璐. 腱骨修复用缝线在锚钉孔眼处的耐磨性能及其影响因素[J]. 纺织学报, 2020, 41(12): 66-72.
[3] 孟晶, 高珊, 卢业虎. 石墨烯气凝胶复合防火面料防护性能的影响因素[J]. 纺织学报, 2020, 41(11): 116-121.
[4] 王秋萍, 张瑞萍, 李成红, 张葛成. 导电涤纶非织造布的制备及其性能[J]. 纺织学报, 2020, 41(10): 116-121.
[5] 沈岳, 蒋高明, 刘其霞. 梯度结构活性碳纤维毡吸声性能分析[J]. 纺织学报, 2020, 41(10): 29-33.
[6] 封端佩, 商元元, 李俊. 三维四向和五向编织复合材料冲击断裂行为的多尺度模拟[J]. 纺织学报, 2020, 41(10): 67-73.
[7] 孙焕惟, 张恒, 甄琪, 朱斐超, 钱晓明, 崔景强, 张一风. 丙烯基纳微米弹性过滤材料的熔喷成型及其过滤性能[J]. 纺织学报, 2020, 41(10): 20-28.
[8] 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8.
[9] 张凌云, 钱晓明, 邹驰, 邹志伟. SiO2气凝胶/ 聚酯-聚乙烯双组分纤维复合保暖材料的制备及其性能[J]. 纺织学报, 2020, 41(08): 22-26.
[10] 武鲜艳, 申屠宝卿, 马倩, 金利民, 张威, 谢胜. 球形弹体冲击下三维正交机织物结构破坏机制有限元分析[J]. 纺织学报, 2020, 41(08): 32-38.
[11] 陈诗萍, 陈旻, 魏岑, 王富军, 王璐. 医用防护服的构效特点及其研发趋势[J]. 纺织学报, 2020, 41(08): 179-187.
[12] 夏磊, 程博闻, 西鹏, 庄旭品, 赵义侠, 刘亚, 康卫民, 任元林. 闪蒸纺纳微米纤维非织造技术的研究进展[J]. 纺织学报, 2020, 41(08): 166-171.
[13] 安琪, 付译鋆, 张瑜, 张伟, 王璐, 李大伟. 医用防护服用非织造材料的研究进展[J]. 纺织学报, 2020, 41(08): 188-196.
[14] 周惠林, 杨卫民, 李好义. 医用口罩过滤材料的研究进展[J]. 纺织学报, 2020, 41(08): 158-165.
[15] 刘宜胜, 徐光逸. 斜吹气流入射角对纱线折入的影响[J]. 纺织学报, 2020, 41(07): 72-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!