纺织学报 ›› 2020, Vol. 41 ›› Issue (08): 15-21.doi: 10.13475/j.fzxb.20191202007

• 纤维材料 • 上一篇    下一篇

等离子体处理对聚四氟乙烯膜粘接性能的影响

陈千1, 廖振1, 徐明2, 朱亚伟1,3()   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215021
    2.常州喜莱维纺织科技有限公司,江苏 常州 213125
    3.现代丝绸国家工程实验室, 江苏 苏州 215123
  • 收稿日期:2019-12-09 修回日期:2020-05-09 出版日期:2020-08-15 发布日期:2020-08-21
  • 通讯作者: 朱亚伟
  • 作者简介:陈千(1995—),男,硕士生。主要研究方向为高性能纺织品和材料。

Effect of plasma treatment on adhesion performance of polytetrafluoroethylene film

CHEN Qian1, LIAO Zhen1, XU Ming2, ZHU Yawei1,3()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
    2. Changzhou Hi Levi Textile Technology, Co., Ltd., Changzhou, Jiangsu 213125, China
    3. National Engineering Laboratory for Modern Silk, Suzhou, Jiangsu 215123, China
  • Received:2019-12-09 Revised:2020-05-09 Online:2020-08-15 Published:2020-08-21
  • Contact: ZHU Yawei

摘要:

为提高聚四氟乙烯(PTFE)膜的粘接性能,研究了氧气等离子体处理对PTFE膜剥离强度和水接触角的影响, 并比较了氧气、氮气和氩气等离子体处理PTFE膜粘接强度的差异,借助X射线光电子能谱仪、扫描电子显微镜和原子力显微镜测试了等离子体处理前后PTFE膜表面元素、形态和粗糙度的变化。结果表明:氮气等离子体处理的PTFE膜,其剥离强度较未处理的PTFE膜提高了539.8%,水接触角提高了11.4°,达120.4°;当放电量低于36 kJ 时,经氧气等离子体处理的PTFE膜剥离强度随放电量的增加呈指数增加,继续增加放电量时,PTFE膜表面形成了凹凸沟槽的荷叶形貌,该荷叶形貌决定了膜粘结性和疏水性的强弱。

关键词: 聚四氟乙烯膜, 等离子体处理, 膜改性, 粘结性, 表面刻蚀

Abstract:

In order to improve the adhesion performance of polytetrafluoroethylene (PTFE) film, this research studied the effect of oxygen plasma treatment on the stripping strength and water contact angle of the film surface, and compared the adhesive strength of films treated by oxygen, nitrogen and argon plasma. In addition, the changes of surface element, morphology and roughness were measured by means of X-ray photoelectron spectroscopy, scanning electron microscopy and atomic force microscopy. The results show that the stripping strength is increased by 539.8% and the contact angle is increased by 11.4° (up to 120.4°) when the PTFE film is treated with nitrogen plasma. When the discharge magnitude is below 36 kJ, the stripping strength of the oxygen-treated PTFE film increases exponentially with the increase of discharge power. When the discharge magnitude is higher, the pattern of lotus leaf with the concave and convex grooves is formed on the PTFE film surface, and the shape of lotus leaf of PTFE film determines the film adhesion and hydrophobicity.

Key words: polytetrafluoroethylene film, plasma treatment, film modification, adhesion performance, surface etching

中图分类号: 

  • TM89

表1

PTFE膜的等离子体处理条件"

样品
编号
气体
种类
功率/
W
时间/
min
气体流量/
(cm3·min-1)
放电量/
kJ
1# O2 300 2 5 36.0
2# N2 300 2 5 36.0
3# Ar 300 2 5 36.0
4# O2 40 2 5 4.8
5# O2 300 2 40 36.0
6# O2 300 1 5 18.0
7# O2 300 2 10 36.0
8# O2 300 2 20 36.0
9# O2 300 2 30 36.0
10# O2 300 2 60 36.0
11# O2 70 2 5 8.4
12# O2 100 2 5 12.0
13# O2 200 2 5 24.0
14# O2 300 3 5 54.0
15# O2 300 4 5 72.0
16# O2 300 5 5 90.0

图1

不同气体等离子体处理PTFE膜的XPS图"

图2

氮气等离子体处理PTFE膜的C1s分峰图"

图3

不同放电量下氧气等离子体处理PTFE膜的扫描电镜照片(×25 000)"

图4

不同气体等离子体处理PTFE膜的扫描电镜照片(×25 000)"

图5

不同气体等离子体处理PTFE膜的AFM照片"

图6

处理功率对PTFE复合膜剥离强度和接触角的影响"

图7

氧气流量对PTFE复合膜剥离强度和接触角的影响"

图8

处理时间对PTFE复合膜剥离强度和接触角的影响"

图9

不同气体等离子体处理对PTFE复合膜剥离强度和接触角的影响"

[1] 郭玉海, 朱海霖, 王峰, 等. 聚四氟乙烯滤膜的发展及应用[J]. 纺织学报, 2015,36(9):149-153.
GUO Yuhai, ZHU Hailin, WANG Feng, et al. Development and application of polytetrafluoroethylene filtration membrane[J]. Journal of Textile Research, 2015,36(9):149-153.
[2] 张恒, 甄琪, 王俊南, 等. 梯度结构耐高温纤维过滤材料的结构与性能[J]. 纺织学报, 2016,37(5):17-22.
ZHANG Heng, ZHEN Qi, WANG Junnan, et al. Structure and performance of high temperature resistant fibrous filters with gradient structure[J]. Journal of Textile Research, 2016,37(5):17-22.
[3] 罗平艳, 蒋金华, 陈南梁, 等. 新型氟乙烯乙烯基醚树脂增强膜材料的制备及其力学性能[J]. 纺织学报, 2018,39(7):50-54.
LUO Pingyan, JIANG Jinhua, CHEN Nanliang, et al. Development of novel fluoroethylene vinyl ether reinforcement membrane and its mechanical proper-ties[J]. Journal of Textile Research, 2018,39(7):50-54.
[4] HORI K, FUJIMOTO S, TOGASHI Y, et al. Improvement in molecular-level adhesive strength of PTFE film treated by atmospheric plasma combined processing[J]. IEEE Transactions on Industry Applications, 2018,55(1):825-832.
doi: 10.1109/TIA.2018.2868035
[5] 张浩凡, 宋双, 周明, 等. 不同亲水基团亲水改性PTFE中空纤维膜[J]. 现代化工, 2017,37(11):106-109.
ZHANG Haofan, SONG Shuang, ZHOU Ming, et al. Modification of PTFE hollow fiber membrane by different hydrophilic groups[J]. Modern Chemical Industry, 2017,37(11):106-109.
[6] 李成才, 王峰, 朱海霖, 等. 双氨基有机硅后交联聚丙烯酸改性PTFE平板膜及其分离性能研究[J]. 膜科学与技术, 2018,38(3):83-90.
LI Chengcai, WANG Feng, ZHU Hailin, et al. Study on hydrophilic modification and separation performance of PTFE flat membrane by polyacrylic acid post-crosslinked with bisamino organosilicone[J]. Membrane Science and Technology, 2018,38(3):83-90.
[7] LIU K, LEI J, ZHENG Z, et al. The hydrophilicity improvement of polytetrafluoroethylene by Ar plasma jet: the relationship of hydrophilicity, ambient humidity and plasma parameters[J]. Applied Surface Science, 2018,458:183-190.
[8] 王振欣, 王月然, 梁小平, 等. 聚合物表面接触角与低温等离子体辐照生成自由基的相关性[J]. 纺织学报, 2011,32(7):1-7.
WANG Zhenxin, WANG Yueran, LIANG Xiaoping, et al. Correlation between contact angle and radical concentration on polymer surface generated by cold plasma irradiation[J]. Journal of Textile Research, 2011,32(7):1-7.
[9] OHKUBO Y, SHIBAHARA M, ISHIHARA K, et al. Effect of rubber compounding agent on adhesion strength between rubber and heat-assisted plasma-treated polytetrafluoroethylene[J]. The Journal of Adhesion, 2019,95(3):242-257.
[10] 王荣昌, 赵悦, 马翠香, 等. 混合单体对等离子体法改性PTFE膜微生物亲和性能的影响[J]. 环境科学研究, 2020,33(2):465-470.
WANG Rongchang, ZHAO Yue, MA Cuixiang, et al. Effect of mixed monomer on microbial affinity of PTFE membrane with plasma surface modification[J]. Research of Environmental Sciences, 2020,33(2):465-470.
[11] YONG J L, FANG Y, CHEN F, et al. Femtosecond laser ablated durable superhydrophobic PTFE films with micro-through-holes for oil/water separation: separating oil from water and corrosive solutions[J]. Applied Surface Science, 2016,389:1148-1155.
[12] 占彦龙, 李文, 李宏, 等. 激光微加工技术制备浸润性可控聚四氟乙烯超疏水表面[J]. 高分子材料科学与工程, 2018,34(4):147-151.
ZHAN Yanlong, LI Wen, LI Hong, et al. Laser micromachining technology for the preparation of super-hydrophobic surfaces with controllable wettability of PTFE[J]. Polymer Materials Science & Engineering, 2018,34(4):147-151.
[13] NICOLAS V, HOWARD F, FRANCOIS R. Selected effect of the ions and the neutrals in the plasma treatment of PTFE surfaces: an OES-AFM-contact angle and XPS study[J]. Plasma Process Polymers, 2005,2(6):493-500.
[14] WILSON D J, WILLIAMS R L, POND R C. Plasma modification of PTFE surfaces: part I: surfaces immediately following plasma treatment[J]. Surface and Interface Analysis, 2001,31:385-396.
[15] 郝致远, 汲胜昌, 宋莹. 氩等离子体射流对聚四氟乙烯表面改性的研究[J]. 西安交通大学学报, 2014,48(4):59-67.
HAO Zhiyuan, JI Shengchang, SONG Ying. Experimental research on surface modification of polytetrafluoroethylene by Ar atmospheric pressure plasma jet[J]. Journal of Xi'an Jiaotong University, 2014,48(4):59-67.
[16] ALENKI V, MIRAN M, ANTON Z. XPS characterization of PTFE after treatment with RF oxygen and nitrogen plasma[J]. Surface & Interface Analysis, 2008,40:661-663.
[17] VANDENCASTEELE N, BROZE B, COLLETTE S, et al. Evidence of the synergetic role of charged species and atomic oxygen in the molecular etching of PTFE surfaces for hydrophobic surface synjournal[J]. Langmuir, 2010,26(21):16503-16509.
doi: 10.1021/la101380j pmid: 20973585
[18] VESEL A, MOZETIC M, BALAT-PICHELIN M. Oxygen atom density in microwave oxygen plasma[J]. Vacuum, 2007,81(9):1088-1093.
[1] 于佳, 辛斌杰, 卓婷婷, 周曦. 高导电性铜/聚吡咯涂层羊毛织物的制备与表征[J]. 纺织学报, 2021, 42(01): 112-117.
[2] 陈诗萍, 陈旻, 魏岑, 王富军, 王璐. 医用防护服的构效特点及其研发趋势[J]. 纺织学报, 2020, 41(08): 179-187.
[3] 朱金铭, 钱建华, 孙丽颖, 李正平, 彭慧敏. 用高长径比银纳米线制备功能性复合涤纶织物及其性能[J]. 纺织学报, 2019, 40(11): 113-118.
[4] 张美玲 沈忆文 王瑞 李先锋 郑广伟. 芳纶纤维的冷等离子体处理及其老化性能[J]. 纺织学报, 2018, 39(11): 73-78.
[5] 罗平艳 蒋金华 陈南梁 胡淳 崔鹏. 新型氟乙烯乙烯基醚树脂增强膜材料的制备及其力学性能[J]. 纺织学报, 2018, 39(07): 50-54.
[6] 王瑞 孙艳丽 刘星 杨华 李博. 碳纳米管改性相变微胶囊的力学与热学性能[J]. 纺织学报, 2018, 39(02): 119-125.
[7] 姚鹏成 夏鑫. 聚乳酸包覆相变材料复合织物的制备及其性能[J]. 纺织学报, 2017, 38(01): 67-72.
[8] 沈丽;戴瑾瑾;陈全伦. 氟碳化合物等离子体处理对纯棉织物表面性质的影响[J]. 纺织学报, 2009, 30(12): 71-75.
[9] 朱旭朝;熊杰;许淑燕;宋叶萍;霍鹏飞. UHMWPE纤维处理条件对其性能的影响[J]. 纺织学报, 2009, 30(06): 10-14.
[10] 姜生. 等离子体处理后UHMWPE纤维与LDPE复合材料的性能[J]. 纺织学报, 2007, 28(9): 57-60.
[11] 谢洪德;王红卫;李宁;张卫东. 柞蚕丝织物等离子体处理接枝后性能变化研究[J]. 纺织学报, 2005, 26(5): 28-30.
[12] 应宗荣;吴大诚. 水溶性聚酯的溶液性质和粘结性能[J]. 纺织学报, 2000, 21(05): 50-52.
[13] 何瑶. 低温氧等离子体处理羊毛的经时效应的研究[J]. 纺织学报, 1998, 19(04): 41-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!