纺织学报 ›› 2020, Vol. 41 ›› Issue (10): 74-80.doi: 10.13475/j.fzxb.20191203007

• 纺织工程 • 上一篇    下一篇

循环应力松弛下黄麻织物/聚乙烯复合材料能量耗散演化规律

汪泽幸(), 吴波, 李帅, 何斌   

  1. 湖南工程学院 纺织服装学院, 湖南 湘潭 411104
  • 收稿日期:2019-12-12 修回日期:2020-03-07 出版日期:2020-10-15 发布日期:2020-10-27
  • 作者简介:汪泽幸(1982—),男,副教授,博士。主要研究方向为产业用纺织品。E-mail:zexing.wang@gmail.com
  • 基金资助:
    湖南省自然科学基金项目(2016JJ6030);湖南省教育厅优秀青年项目(16B059)

Energy dissipation evolution of jute fabric/polyethylene composite under cyclic stress relaxation

WANG Zexing(), WU Bo, LI Shuai, HE Bin   

  1. College of Textile and Fashion, Hunan Institute of Engineering, Xiangtan, Hunan 411104, China
  • Received:2019-12-12 Revised:2020-03-07 Online:2020-10-15 Published:2020-10-27

摘要:

为探讨麻纤维增强热塑性复合材料在复杂受力条件下的能量耗散特性,以黄麻织物为增强体,聚乙烯膜为基体,采用热压法制备了黄麻织物/聚乙烯复合材料,并对其在循环应力松弛下的力学性能进行测试,分析应力松弛时间、循环应力峰值、循环次数对应变能(总应变能、弹性应变能、塑性应变能)和应变能系数(可恢复与不可恢复应变能系数)的影响规律。结果表明:经、纬向试样的变形规律与能量演化机制一致,应变能与应变能系数不仅与应力松弛时间、循环应力峰值密切相关,同时还与循环次数密切相关;循环应力松弛下的弹性应变能变化趋势迥异于无应力松弛过程的简单循环加载。

关键词: 黄麻织物, 聚乙烯, 循环应力松弛, 应变能, 能量耗散

Abstract:

In order to investigate the energy dissipation characteristics of jute fiber reinforced thermoplastic composite under complex stress conditions, jute fabric/polyethylene composites were prepared using hot pressing with jute fabric as reinforcement and polyethylene film as matrix. The mechanical properties under cyclic stress relaxation were tested,and the effects of stress relaxation time, peak cyclic stress and cyclic number on evolution of the strain energy (total strain energy, elastic strain energy, plastic strain energy) and strain energy factor (recoverable and unrecoverable strain energy factor) were also analyzed. The results show that deformation mechanism and energy dissipation evolution of warp and fill specimen have good agreement. The strain energy and strain energy factor are governed by stress relaxation time, peak cyclic stress, and as well as cyclic number. Moreover, it is found that the elastic strain energy under cyclic stress relaxation is different from that under simple cyclic loading without stress relaxation.

Key words: jute fabric, polyethylene, cyclic stress relaxation, strain energy, energy dissipation

中图分类号: 

  • TS101.923

图1

经纬向试样应力与应变曲线"

图2

经纬向试样第1个循环"

图3

经纬向试样应变能与应变能系数"

图4

不同应力松弛时间下应变能曲线"

图5

不同应力松弛时间下应变能系数曲线"

图6

不同应力松弛时间下经向试样第1个循环"

图7

不同循环应力峰值下应变能曲线"

图8

不同循环应力峰值σmax下应变能系数曲线"

图9

不同循环峰值应力下经向试样第1个循环"

[1] BAJWA D S, BHATTACHARJEE S. Current progress, trends and challenges in the application of biofiber composites by automotive industry[J]. Journal of Natural Fibers, 2016,13(6):660-669.
[2] IBRAHIM I D, JAMIRU T, SADIKU E R, et al. Mechanical properties of sisal fibre-reinforced polymer composites: A review[J]. Composite Interfaces, 2015,23(1):15-36.
doi: 10.1080/09276440.2016.1087247
[3] 郑科, 段盛文, 成莉凤, 等. 麻纤维增强热塑性复合材料的研究与应用[J]. 中国麻业科学, 2017,39(6):312-320.
ZHENG Ke, DUAN Shengwen, CHENG Lifeng, et al. Development and applications of fibrilia reinforced thermoplastic compo-sites[J]. Plant Fiber Sciences in China, 2017,39(6):312-320.
[4] 程伟, 孙利明, 姚晨光, 等. 麻纤维/热塑性树脂复合材料的研究进展[J]. 化工新材料, 2014,42(1):13-15, 35.
CHENG Wei, SUN Liming, YAO Chenguang, et al. Research progress of fibrilia/thermoplastic composites[J]. New Chemical Materials, 2014,42(1):13-15, 35.
[5] 李婷婷. HIPS/红麻纤维复合材料性能研究[D]. 大连: 大连工业大学, 2013: 23-57.
LI Tingting. Study on properties of HIPS/Kenaf fiber composite[D]. Dalian: Dalian Polytechnic University, 2013: 23-57.
[6] 杨建霞. 苎麻纤维增强复合材料力学性能及界面吸水失效机理研究[D]. 上海:东华大学, 2017: 57-101.
YANG Jianxia. Mechanical properties and wet-induced interfacial failure ramie fiber reinforced composites[D]. Shanghai: Donghua University, 2017: 57-101.
[7] 彭书逸. 黄麻纤维/聚丙烯车用复合材料成型工艺及其性能研究[D]. 长沙: 湖南大学, 2018: 40-58.
PENG Shuyi. Study on the molding process and properties of Jute fiber reinforced polypropylene composite for automobile[D]. Changsha: Hunan University, 2018: 40-58.
[8] 刘成诚. PLA/黄麻多层混纤复合材料耐老化性能的研究[D]. 杭州:浙江理工大学, 2015: 25-49.
LIU Chengcheng. The research of resistance aging performance of the PLA/jute multi-layer composite materials [D]. Hangzhou: Zhejiang Sci-Tech University, 2015: 25-49.
[9] 任超. 苎麻/聚乙烯复合材料热氧老化性能与机理[D]. 南京: 南京林业大学, 2009: 20-62.
REN Chao. Study on thermos-oxidative aging of the ramie fiber/polyethylene composites properties and its mechanism[D]. Nanjing: Nanjing Forestry University, 2009: 20-62.
[10] 雷文. 麻纤维/聚合物复合材料[J]. 合成树脂及塑料, 2009,26(3):67-73.
LEI Wen. Fibrilia/polymer composites[J]. China Synthetic Resin and Plastics, 2009,26(3):67-73.
[11] BETIANA A A, MARÍA M R, NORMA E M. Creep and dynamic mechanical behavior of PP-jute composites: Effect of the interfacial adhesion[J]. Composites Part A: Applied Science and Manufacturing, 2007,38(6):1507-1516.
doi: 10.1016/j.compositesa.2007.01.003
[12] HAO A, CHEN Y Z, CHEN J Y. Creep and recovery behavior of kenaf/polypropylene nonwoven com-posites[J]. Journal of Applied Polymer Science, 2014,131(17):8864-8874.
[13] MARCO M, MARIA M, VINCENZO F. Creep behavior of poly (lactic acid) based biocomposites[J]. Materials, 2017,10(4):395-407.
doi: 10.3390/ma10040395
[14] 杨香莲, 韦春, 吕建, 等. 剑麻纤维处理方法对SF/PF共混复合材料动态力学性能的影响[J]. 高分子材料科学与工程, 2010,26(2):96-98.
YANG Xianglian, WEI Chun, LV Jian, et al. Effects of sisal fiber treatment on dynamic mechanical properties of sisal fiber/phenol formaldehyde resin hybrid compo-sites[J]. Polymer Materials Sciences and Engineering, 2010,26(2):96-98.
[15] 盛旭敏, 李又兵. 聚合物基天然植物纤维增强复合材料研究进展[J]. 化工新型材料, 2012,40(10):1-3.
SHENG Xumin, LI Youbing. Recent development of natural fiber reinforced polymer composites[J]. New Chemical Materials, 2012,40(10):1-3.
[16] 盛旭敏. 麻纤维/异种纤维/聚合物复合材料研究进展[J]. 化工新型材料, 2018,46(12):238-241, 246.
SHENG Xumin. Research progress of fibrilia and other fiber hybrid polymer composite[J]. New Chemical Materials, 2018,46(12):238-241, 246.
[17] 汪泽幸, 吴波, 何斌, 等. 循环何在下黄麻纤维/聚乙烯复合材料的残余变形演化与能量耗散特性[J]. 产业用纺织品, 2019,37(10):25-29, 42.
WANG Zexing, WU Bo, HE Bin, et al. Residual deformation evolution and energy dissipation characteristics of jute fiber/polyethylene composites under cyclic loading[J]. Technical Textiles, 2019,37(10):25-29, 42.
[18] 陈丽华. 弹力针织物的疲劳测试方法[J]. 纺织学报, 2014,35(12):57-62.
CHEN Lihua. Research on test method for spandex fatigue of elastic warp knitted fabrics[J]. Journal of Textile Research, 2014,35(12):57-62.
[19] 徐国平, 丁新波, 涂杨松, 等. 柔性涤纶吊装捆绑带的耐动态疲劳性能[J]. 纺织学报, 2015,36(2):66-70.
XU Guoping, DING Xinbo, TU Yangsong, et al. Dynamic fatigue resistance of webbing sling with high-tenacity PET fiber[J]. Journal of Textile Research, 2015,36(2):66-70.
[20] 汪泽幸, 朱文佳, 何斌, 等. 单轴多级循环加载下聚氯乙烯膜材料的力学行为与能量耗散[J]. 纺织学报, 2019,40(6):20-26.
WANG Zexing, ZHU Wenjia, HE Bin, et al. Mechanical behavior and energy dissipation of polyvinyl chloride membrane under uniaxial multi-level cyclic loading[J]. Journal of Textile Research, 2019,40(6):20-26.
[21] DROZDOV A D. Cyclic viscoelastoplasticity and low-cycle fatigue of polymer composites[J]. International Journal of Solids and Structures, 2011,48(13):2026-2040.
doi: 10.1016/j.ijsolstr.2011.03.009
[22] FOTOUH A, WOLODKO J, LIPSETT M G. Fatigue of natural fiber thermoplastic composites[J]. Composites Part B: Engineering, 2014,62(1):175-182.
doi: 10.1016/j.compositesb.2014.02.023
[23] 潘应熊, 童小燕, 李斌. 复合材料疲劳性能的能量耗散试验研究[J]. 强度与环境, 2009,36(1):51-56.
PAN Yingxiong, TONG Xiaoyan, LI Bin. Experimental research on fatigue behavior of composites using energy dissipation methodology[J]. Structure and Environment Engineering, 2009,36(1):51-56.
[24] SPRINGER G S, HUANG H, CHRISTENSEN R M. Predicting failure in composite laminates using dissipated energy[J]. Journal of Composite Materials, 2003,37(23):2073-2099.
doi: 10.1177/002199803035187
[1] 杨雅茹, 沈小军, 唐柏林, 牛梅. 超高分子量聚乙烯纤维的无卤阻燃整理[J]. 纺织学报, 2020, 41(11): 109-115.
[2] 管福成, 郭静, 吕丽华, 谭倩, 宋敬星, 张欣. 聚乙烯醇/磷虾蛋白纤维的氢键作用机制及其性能[J]. 纺织学报, 2020, 41(10): 7-13.
[3] 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14.
[4] 张凌云, 钱晓明, 邹驰, 邹志伟. SiO2气凝胶/ 聚酯-聚乙烯双组分纤维复合保暖材料的制备及其性能[J]. 纺织学报, 2020, 41(08): 22-26.
[5] 胡铖烨, 缪润伍, 韩潇, 洪剑寒, GIL Ignacio. 聚乙烯醇对芳纶复合纱聚苯胺导电层耐久性影响[J]. 纺织学报, 2020, 41(04): 91-97.
[6] 万雨彩, 刘迎, 王旭, 易志兵, 刘轲, 王栋. 聚乙烯醇-乙烯共聚物纳米纤维增强聚丙烯微米纤维复合空气过滤材料的结构与性能[J]. 纺织学报, 2020, 41(04): 15-20.
[7] 王晓春, 张健飞, 张丽平, 王娜娜, 闫金龙, 赵国樑. 高疏水染料结构对超高分子量聚乙烯纤维染色性能的影响[J]. 纺织学报, 2020, 41(03): 78-83.
[8] 柳健, 毛金露, 彭丽, 蔡凌云, 郑旭明, 张富山. 聚乙烯-聚丙烯非织造布亲水油剂的性能及其调控[J]. 纺织学报, 2019, 40(09): 114-121.
[9] 周铃, 靳向煜. 热气流固结纤维网串珠结构可控性及其结晶动力学[J]. 纺织学报, 2019, 40(08): 27-34.
[10] 吴利伟, 王伟, 林佳弘, 姜茜. 芳纶/超高分子量聚乙烯织物增强聚氨酯夹芯复合材料制备及其力学性能[J]. 纺织学报, 2019, 40(07): 64-70.
[11] 李娜娜, 鲁清晨, 尹巍巍, 肖长发. 冷却温度对聚偏氟乙烯/超高分子量聚乙烯共混中空纤维膜结构与性能的影响[J]. 纺织学报, 2019, 40(07): 8-12.
[12] 汪泽幸, 朱文佳, 何斌, 刘超. 单轴多级循环加载下聚氯乙烯膜材料的力学行为与能量耗散[J]. 纺织学报, 2019, 40(06): 20-26.
[13] 刘金鑫, 张海峰, 张星, 黄晨, 郑晓冰, 靳向煜. 多级拉伸与热定型对聚乙烯/聚丙烯双组分纤维结构和性能的影响[J]. 纺织学报, 2019, 40(05): 24-29.
[14] 王宗乾, 王邓峰, 王明荣, 沈皆亮. 抗静电热熔胶的制备及其在覆膜非织造布中的应用[J]. 纺织学报, 2019, 40(04): 96-102.
[15] 付译鋆 安琪 张伟 张瑜 柯惠珍. 壳聚糖基纳米纤维载药体系及其缓释行为[J]. 纺织学报, 2018, 39(12): 7-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!