纺织学报 ›› 2021, Vol. 42 ›› Issue (02): 34-40.doi: 10.13475/j.fzxb.20200804607

• 纤维材料 • 上一篇    下一篇

聚丙烯腈/羧基丁苯乳胶复合纳米纤维膜的制备及其性能

郭雪松1,2, 顾嘉怡1,2, 胡建臣1,2, 魏真真1,2(), 赵燕1,2   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215123
    2.苏州大学 现代丝绸国家工程实验室, 江苏 苏州 215123
  • 收稿日期:2020-08-10 修回日期:2020-11-19 出版日期:2021-02-15 发布日期:2021-02-23
  • 通讯作者: 魏真真
  • 作者简介:郭雪松(1997—),女,硕士生。主要研究方向为锂电池纤维隔膜的制备与性能。
  • 基金资助:
    江苏省自然科学基金青年项目(BK20190223);南通市科技项目(JC2019013)

Preparation and properties of polyacrylonitrile/carboxyl styrene butadiene latex composite nanofibrous membranes

GUO Xuesong1,2, GU Jiayi1,2, HU Jianchen1,2, WEI Zhenzhen1,2(), ZHAO Yan1,2   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
    2. National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, China
  • Received:2020-08-10 Revised:2020-11-19 Online:2021-02-15 Published:2021-02-23
  • Contact: WEI Zhenzhen

摘要:

为提高静电纺聚丙烯腈(PAN)纳米纤维膜的力学性能,将羧基丁苯乳胶(SBR)与PAN纳米纤维膜通过溶液浸泡进行复合,制备了一系列PAN/SBR复合纳米纤维膜,研究了SBR质量分数对PAN纳米纤维膜表面形貌、化学结构、润湿性能、热性能和力学性能的影响。结果表明:SBR以物理粘结的形式与PAN纳米纤维膜复合在一起,随着SBR质量分数的增加,其在PAN纤维表面分布逐渐变得不均匀;SBR的加入对PAN纳米纤维膜的热稳定性没有影响,但会使纤维膜的水接触角增大,亲水性变差;加入少量的SBR(小于等于15.6%)会使PAN纳米纤维膜的断裂强度、断裂伸长、初始模量、断裂能和耐穿刺力增大,当SBR质量分数为PAN纳米纤维膜的8.5%时,复合纳米纤维膜的断裂能提高约4倍,显著改善了PAN纳米纤维膜的力学性能。

关键词: 聚丙烯腈, 羧基丁苯乳胶, 静电纺丝, 纳米纤维膜, 电池隔膜

Abstract:

In order to improve the mechanical properties of electrospun polyacrylonitrile (PAN) nanofiber membranes, a series of PAN/SBR composite nanofibrous membranes were prepared by immersing PAN nanofibrous membranes into carboxyl styrene butadiene latex (SBR) solution. The effects of SBR content on the surface morphology, chemical structure, wettability, thermal and mechanical properties of PAN nanofibrous membranes were investigated. The results reveal that SBR is physically bonded to PAN nanofibers. With the increase of SBR content, the distribution of SBR on the surface of PAN fiber gradually becomes uneven. The addition of SBR has no effect on the thermal stability of PAN membrane, but increases the water contact angle and jeopardizes the hydrophilicity of the membrane. At the same time, adding a small amount of SBR (less than or equal to 15.6%) is found to increase the breaking strength, breaking elongation, initial modulus, breaking energy and puncture resistance of PAN nanofibrous membrane. When the content of SBR is 8.5% of PAN membrane, the breaking energy of the composite membrane is increased by about 4 times, which significantly improves the mechanical properties of PAN nanofiber membrane.

Key words: polyacrylonitrile, carboxyl styrene butadiene latex, electrospinning, nanofibrous membrane, battery separator

中图分类号: 

  • TQ342.93

图1

PAN/SBR复合纳米纤维膜的扫描电镜照片"

表1

PAN/SBR复合纳米纤维膜基本参数"

SBR质量
分数/%
厚度/
μm
密度/
(g·cm-3)
SBR实际质
量分数/%
孔隙率/
%
断裂强
度/MPa
断裂伸长
率/%
初始模
量/MPa
断裂能/
(kJ·m-3)
刺破强
度/cN
PAN 27 0.17 0 82.19 5.88 30.00 85.30 1 189 15.84
0.10 27 0.20 4.91 79.36 6.75 32.25 137.17 1 622 25.32
0.25 27 0.16 6.44 74.72 7.46 32.54 159.18 1 963 24.98
0.50 27 0.29 8.50 77.41 10.91 61.25 232.13 5 420 28.75
1.00 27 0.23 15.67 62.55 12.44 43.16 256.96 4 378 24.98
2.50 27 0.21 32.00 47.64 15.28 22.08 324.66 2 607 25.32

图2

PAN/SBR复合纳米纤维膜的红外谱图"

图3

PAN/SBR复合纳米纤维膜的热稳定性"

图4

PAN/SBR复合纳米纤维膜接触不同时间的水接触角"

图5

PAN/SBR复合纳米纤维膜的应力-应变曲线"

图6

PAN/SBR复合纳米纤维膜的电化学性能"

[1] 钱晓明, 魏楚, 钱幺, 等. 空气过滤用微纳米聚丙烯腈/皮芯型聚乙烯-聚丙烯双组分纤维多层复合材料的制备与性能[J]. 复合材料学报, 2020,37(7):1513-1521.
QIAN Xiaoming, WEI Chu, QIAN Yao, et al. Preparation and properties of micro nano polyacrylo-nitrile/sheath core polyethylene polypropylene bicomponent fiber multilayer composite for air filtra-tion[J]. Acta Materiae Compositae Sinica, 2020,37(7):1513-1521.
[2] ZHANG L F, LUO J, MENKHAUS T J, et al. Antimicrobial nano-fibrous membranes developed from electrospun polyacrylonitrile nanofibers[J]. Journal of Membrane Science, 2011,369(1/2):499-505.
[3] 曹延娟, 辛斌杰, 张杰, 等. 天然纤维素/聚丙烯腈抗菌纳米纤维的制备与表征[J]. 复合材料学报, 2015,32(4):1042-1052.
CAO Yanjuan, XIN Binjie, ZHANG Jie, et al. Preparation and characterization of natural cellulose/polyacrylonitrile antibacterial nanofibers[J]. Acta Materiae Compositae Sinica, 2015,32(4):1042-1052.
[4] ZHANG S C, TANG N, CAO L T, et al. Highly integrated polysulfone/polyacrylonitrile/polyamide-6 air filter for multilevel physical sieving airborne particles[J]. ACS Applied Materials & Interfaces, 2016,8(42):29062-29072.
[5] 王利娜, 娄辉清, 辛长征, 等. 空气过滤用电纺聚偏氟乙烯-聚丙烯腈/熔喷聚丙烯无纺布复合材料的制备及过滤性能[J]. 复合材料学报, 2019,36(2):277-282.
WANG Lina, LOU Huiqing, XIN Changzheng, et al. Preparation and filtration properties of electrospun polyvinylidene fluoride polyacrylonitrile/melt blown polypropylene nonwoven fabric composites for air filtration[J]. Acta Materiae Compositae Sinica, 2019,36(2):277-282.
[6] 吴宽, 王翔, 李子鸣, 等. 基于聚丙烯腈纤维膜的高强度复合隔膜的制备[J]. 武汉大学学报(理学版), 2020(4):331-337.
WU Kuan, WANG Xiang, LI Ziming, et al. Preparation of high strength composite membrane based on polyacrylonitrile fiber membrane [J]. Journal of Wuhan University (Science Edition), 2020 (4):331-337.
[7] 顾翔宇. 微/纳米纤维的静电纺丝法制备及应用[D]. 南京:南京邮电大学, 2019: 11-12.
GU Xiangyu. Preparation and application of micro/nano fibers by electrospinning[D]. Nanjing:Nanjing University of Posts and Telecommunications, 2019: 11-12.
[8] XIAO K, ZHAI Y, YU J, et al. Nanonet-structured poly(m-phenylene isophthalamide)-polyurethane membranes with enhanced thermostability and wettability for high power lithium ion batteries[J]. RSC Advances, 2015,5(68):55478-55485.
[9] WANG Q J, SONG W L, FAN L Z, et al. Facile fabrication of polyacrylonitrile/alumina composite membranes based on triethylene glycol diacetate-2-propenoic acid butyl ester gelpolymer electrolytes for high-voltage lithium-ion batteries[J]. Journal of Membrane Science, 2015,486:21-28.
[10] 孙妮. SBS与SBR改性乳化沥青粘层油性能对比分析[D]. 西安:长安大学, 2014: 2-15.
SUN Ni. Performance comparison and analysis of SBS and SBR modified emulsified asphalt tack coat oil[D]. Xi'an: Chang'an University, 2014: 2-15.
[11] MASLEY Kwaku Julius. 半柔性材料抗裂性能评价与改善措施的研究[D]. 广州:华南理工大学, 2014: 1-30.
MASLEY Kwaku Julius. Study on evaluation and improvement measures of crack resistance of semi flexible materials[D]. Guangzhou: South China University of Technology, 2014: 1-30.
[12] 弋戈. 涂布纸的发展方向和涂布用SBR胶乳[J]. 国际造纸, 2003(5):10-15.
YI Ge. Development trend of coated paper and SBR latex for coating[J]. International Paper, 2003(5):10-15.
[13] 周一龙. BRA/橡胶复合改性沥青混凝土路用性能研究[J]. 山西建筑, 2020,46(14):114-116,156.
ZHOU Yilong. Study on road performance of BRA/rubber composite modified asphalt concrete[J] Shanxi Architecture, 2020,46(14):114-116,156.
[14] ABDOLLAHI M, RAHMATPOUR A, AALAIE J, et al. Structure and properties of styrene-butadienerubber/pristine clay nanocomposites prepared by latex compounding method[J]. e-Polymers, 2007. DOI: 0.1515/epoly.2007.7.1.861.
[15] CHANTAWEE K, RIYAJAN S A. Carboxylated styrene-butadiene rubber adhesion for biopolymer product- based from cassava starch and sugarcane leaves fiber[J]. Industrial Crops and Products, 2018(125):639-647.
[16] RASOUL E N, SAIED N K, MOHAMMADREZA N, et al. Improving mechanical properties of carbon/epoxy composite by incorporating functionalized electrospun polyacrylonitrile nanofibers[J]. Macromolecular Materials and Engineering, 2017. DOI: 10.1002/mame. 201600551.
pmid: 22184499
[17] 马启学, 唐爱玲. 红外光谱在 PAN 氧化纤维结构测定中的应用[J]. 石化技术与应用, 1991(3):187-190.
MA Qixue, TANG Ailing. Application of infrared spectroscopy in the structural determination of PAN oxidized fiber[J]. Petrochemical Technology & Application, 1991 (3):187-190.
[18] 王绮轩. 羧基丁苯胶乳中结合苯乙烯含量的红外光谱测定法[J]. 光谱实验室, 1994(5):40-43.
WANG Qixuan. Determination of bound styrene content in carboxylated styrene butadiene latex by infrared spectrometry[J]. Spectroscopy Laboratory, 1994 (5):40-43.
[19] 李国庆, 李平平, 刘瀚霖, 等. 聚丙烯腈/聚氨酯透明膜的制备及其性能[J]. 纺织学报, 2020,41(3):20-25.
LI Guoqing, LI Pingping, LIU Hanlin, et al. Preparation and properties of polyacrylonitrile/polyurethane transparent membranes[J]. Journal of Textile Research, 2020,41(3):20-25.
[20] GRIBANOV A V, SAZANOV Y N. Polyacrylonitrile: carbonization problems[J]. Russain Journal of Applied Chemistry, 2008,81(6):919-932.
[21] SAFEEDA N V F, GOPINATHAN J, INDUMATHI B, et al. Morphology and hydroscopic properties of acrylic/thermoplastic polyurethane core-shell electrospun micro/nano fibrous mats with tunable porosity[J]. RSC Advances, 2016,6(59):54286-54292.
[22] 赵永春, 陈虎魁. 水果套袋纸抗水涂布胶的研制[J]. 中国胶粘剂, 2001(6):19-21.
ZHAO Yongchun, CHEN Hukui. Preparation of water resistant coating adhesive for fruit bagging paper[J]. Chinese Adhesives, 2001 (6):19-21.
[23] CIESIELSKA D, LIU P. Mechanical, rheological and morphological properties of recycled expanded polystyrene/styrene butadiene rubber blends[J]. Kautschuk Und Gummi Kunststoffe, 2000,53(5):273-276.
[1] 张亦可. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. , 2021, 42(03): 0-0.
[2] 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174.
[3] 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29.
[4] 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45.
[5] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[6] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[7] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/FeCl3复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20.
[8] 孙倩, 阚燕, 李晓强, 高德康. 聚丙烯腈/氯化钴纳米纤维比色湿度传感器的制备及其性能[J]. 纺织学报, 2020, 41(11): 27-33.
[9] 王利媛, 康卫民, 庄旭品, 鞠敬鸽, 程博闻. 磺化聚醚砜纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(11): 19-26.
[10] 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173.
[11] 王子希, 胡毅. 基于ZnCo2O4的多孔碳纳米纤维制备及其储能性能[J]. 纺织学报, 2020, 41(11): 10-18.
[12] 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[13] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
[14] 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8.
[15] 段红梅, 汪希铭, 黄子欣, 高晶, 王璐. 纤维基介孔SiO2药物载体的构建及其释药性能[J]. 纺织学报, 2020, 41(07): 15-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!