纺织学报 ›› 2021, Vol. 42 ›› Issue (05): 84-89.doi: 10.13475/j.fzxb.20200605506

• 纺织工程 • 上一篇    下一篇

冲击波在陶瓷增强纬编双轴向多层衬纱织物及机织物复合材料中传递的表征

乔灿灿1,2, 姜亚明1,2, 齐业雄1,2(), 林温妮1,2, 张野1,2   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.天津工业大学 先进纺织复合材料教育部重点实验室, 天津 300387
  • 收稿日期:2020-06-18 修回日期:2021-02-13 出版日期:2021-05-15 发布日期:2021-05-20
  • 通讯作者: 齐业雄
  • 作者简介:乔灿灿(1994—),女,硕士生。主要研究方向为纬编复合材料的设计与成型。
  • 基金资助:
    天津市自然科学基金项目(18JCQNJC73300)

Characterization of shock wave propagation in ceramic reinforced weft-knitted biaxial multilayer yarnlining fabric and woven fabrics composites

QIAO Cancan1,2, JIANG Yaming1,2, QI Yexiong1,2(), LIN Wenni1,2, ZHANG Ye1,2   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
  • Received:2020-06-18 Revised:2021-02-13 Online:2021-05-15 Published:2021-05-20
  • Contact: QI Yexiong

摘要:

为了分析冲击波在复合材料内的传递规律,通过将纬编双轴向(MBWK)多层衬纱织物、机织物与陶瓷层交替铺层与不饱和聚酯树脂进行复合制备了复合材料,利用落锤冲击试验机对复合材料进行冲击测试,研究了试样冲击破坏后陶瓷片裂纹扩展及碎裂规律,探讨了冲击应力在不同结构复合材料内部的传播规律,并分析了MBWK织物增强复合材料的冲击应力波传播机制。结果表明:复合材料在冲击过程中,出现了材料的分层损伤;冲击应力波横波表现在陶瓷材料表面,即造成陶瓷材料环形损伤;冲击应力波纵波沿材料厚度方向传播,复合材料各层对能量的吸收有差别;同时,相同工艺条件下,机织物复合材料破坏面积小、裂纹数量少,说明机织物复合材料对冲击能量吸收较多、抗冲击性能较好。

关键词: 复合材料, 纬编双轴向织物, 陶瓷薄片, 冲击表征, 裂纹扩展

Abstract:

In order to characterize the propagation of shock waves in composite materials, a composite was prepared by compounding the weft-knitted biaxial (MBWK) multi-layer lining fabric, woven fabric and a ceramic layer alternately with unsaturated polyester resin. The hammer impact test was carried out on the composite material specimens, and the crack propagation and fragmentation of the ceramic sheets were studied after the specimen was impact damaged. The propagation of impact stress in the composite materials was explored with different structures, revealing the stress wave propagation mechanism of the MBWK fabric reinforced composites upon impact loading. The experimental results show that during the impact of the composite materials, delamination of the materials occurs. The existence of the transverse stress wave is manifested on the surface of the ceramic material, which causes ring damage to the ceramic layer, and the longitudinal wave propagates along the thickness of the material, and the layers of the composite material, causing different mechanisms of energy absorption for each layer. At the same time, under the same process conditions, the damage area and crack number of woven composite are small, which indicates that the woven composite has more impact energy absorption and better impact resistance.

Key words: composite material, weft-knitted biaxial fabric, ceramic sheet, impact characterization, crack propagation

中图分类号: 

  • TB332

图1

陶瓷增强MBWK织物复合材料示意图"

表1

陶瓷增强MBWK织物复合材料板成分含量"

材料板编号 织物质量分数 陶瓷质量分数 树脂质量分数
1* 25.39 52.06 22.55
2* 26.07 53.45 20.48
3* 24.61 50.45 24.94
4* 24.90 51.05 24.05
5* 24.94 51.13 23.93

图2

陶瓷增强机织物复合材料示意图"

表2

陶瓷增强机织物复合材料板成分含量"

材料板编号 织物质量分数 陶瓷质量分数 树脂质量分数
1# 23.57 60.49 15.94
2# 25.02 64.23 10.75

表3

实验参数设置"

试样类型 预设冲击
能量/J
锤体质
量/kg
冲击高
度/mm
陶瓷增强MBWK织物复合材料 18 2.0 918.7
陶瓷增强机织物复合材料 12 3.5 347.6

图3

陶瓷增强MBWK织物复合材料与陶瓷增强机织物复合材料冲击后整体破坏形貌"

图4

复合材料拆解及表征"

图5

冲击波在陶瓷增强MBWK复合材料内的传播表征"

图6

冲击波在陶瓷增强机织物复合材料内的传播表征"

[1] 邓文波, 习小斌, 冯万喜. 复合材料主要应用领域现状与发展趋势[J]. 黑龙江科技信息, 2017(7):84.
DENG Wenbo, XI Xiaobin, FENG Wanxi. Current situation and development trend of main application fields of composite materials[J]. Heilongjiang Science and Technology Information, 2017 ( 7):84.
[2] 邬志华, 曾竟成, 刘钧. 高速列车及其用复合材料的发展[J]. 材料导报, 2011,25(21):108-114.
WU Zhihua, ZENG Jingcheng, LIU Jun. Development of composite materials for high speed trains[J]. Materials Guide, 2011,25(21):108-114.
[3] 崔童, 王铮. 高速列车内饰件轻量化设计[J]. 科技创新导报, 2013(8):42-44.
CUI Tong, WANG Zheng. Lightweight design of high speed train interior trim[J]. Science and Technology Innovation Guide, 2013 (8):42-44.
[4] 李世涛, 赵长龙. 复合材料在高速列车上的应用:大型、复杂、通用[J]. 中国战略新兴产业, 2014(15):88-91.
LI Shitao, ZHAO Changlong. Application of composite materials in high speed trains: large, complex and general[J]. China's Strategic Emerging Industries, 2014 (15):88-91.
[5] 张佐光, 梁志勇, 张大兴, 等. 防弹复合材料[J]. 航空制造工程, 1997(4):9-11.
ZHANG Zuoguang, LIANG Zhiyong, ZHANG Daxing, et al. Bulletproof composite materials[J]. Aeronautical Manufacturing Engineering, 1997 (4):9-11.
[6] 薛书凯, 陈建梅, 成敏苏. 装甲车用新型高性能防弹复合材料技术研究[J]. 复合材料科学与工程, 2012(4):80-83.
XUE Shukai, CHEN Jianmei, CHENG Minsu. Research on new high performance bulletproof composite materials for armored vehicles[J]. Composites Science and Engineering, 2012 (4):80-83.
[7] 陈娟, 彭蜀晋. 现代防弹材料发展概观[J]. 化学教育, 2018,39(8):7-12.
CHEN Juan, PENG Shujin. Overview of the development of modern bulletproof materials[J]. Chemical Education, 2018,39(8):7-12.
[8] 邵磊, 余新泉, 于良. 防弹纤维复合材料在装甲防护上的应用[J]. 高科技纤维与应用, 2007(2):31-34.
SHAO Lei, YU Xinquan, YU Liang. Application of bulletproof fiber composite material in armor protection[J]. High Tech Fiber and Application, 2007 (2):31-34.
[9] 高原, 姚凯. 军用车辆装甲防护材料与技术发展的研究[J]. 机电产品开发与创新, 2015,28(2):10-12.
GAO Yuan, YAO Kai. Research on the development of armor protection materials and technology for military vehicles[J]. Development and Innovation of Electromech-Anical Products, 2015,28(2):10-12.
[10] 陈智勇, 程广伟, 徐颖强, 等. 防弹车辆用陶瓷复合装甲研究[J]. 中国陶瓷, 2018,54(11):1-8.
CHEN Zhiyong, CHENG Guangwei, XU Yingqiang, et al. Research on ceramic composite armor for bulletproof vehicles[J]. China Ceramics, 2018,54(11):1-8.
[11] 肖军. 个体防护装备用高新技术纤维[J]. 现代橡胶技术, 2015,41(2):10-16.
XIAO Jun. High tech fiber for personal protective equipment[J]. Modern Rubber Technology, 2015,41(2):10-16.
[12] 姚磊江, 王景深, 张沥, 等. 二维C/SiC复合材料低速冲击损伤特性的表征研究[J]. 机械强度, 2013,35(2):148-151.
YAO Leijiang, WANG Jingshen, ZHANG Li, et al. Characterization of damage characteristics of 2D C/SiC Composites under low velocity impact[J]. Mechanical Strength, 2013,35(2):148-151.
[13] 方丹丹, 阎建华. 三维五向编织玻璃纤维/碳纤环氧树脂混杂复合材料冲击性能和冲击后弯曲性能研究[J]. 复合材料科学与工程, 2014(7):57-61.
FANG Dandan, YAN Jianhua. Study on the impact and post impact bending properties of three-dimensional five direction braided glass fiber / carbon fiber epoxy hybrid composites[J]. Composites Science and Engineering, 2014 ( 7):57-61.
[14] 许国栋, 李地红, 吴昊宇, 等. 模糊评价法表征复合材料层合板低能量冲击行为[J]. 材料导报, 2018,32(32):573-576.
XU Guodong, LI Dihong, WU Haoyu, et al. Characterizat-ion of low energy impact behavior of composite laminates by fuzzy evaluation method[J]. Materials Guide, 2018,32(32):573-576.
[15] 许国栋, 李地红, 吴昊宇, 等. 贴近度法表征复合材料层合板低能量冲击行为[J]. 复合材料科学与工程, 2019(2):45-50.
XU Guodong, LI Dihong, WU Haoyu, et al. Characterizat-ion of low energy impact behavior of composite laminates by proximity method[J]. Composites Science and Engineering, 2019 ( 2):45-50.
[16] 张福乐, 林兰天, 薛亚静, 等. 低速冲击下纺织复合材料应力波平面传递研究[J]. 棉纺织技术, 2015,43(6):1-5.
ZHANG Fule, LIN Lantian, XUE Yajing, et al. Research on stress wave plane transfer of textile composites under low velocity impact[J]. Cotton Textile Technology, 2015,43(6):1-5.
[17] POTEL C, CHOTARD T, BELLEVAL J F, et al. Characterization of composite materials by ultrasonic methods: modelization and application to impact damage[J]. Composites Part B-Engineering, 1998,29(2):159-169.
doi: 10.1016/S1359-8368(97)00006-1
[18] 刘晓宇, 李哲, 翟奋楼. 平纹芳纶织物/环氧树脂复合材料抗冲击性能研究[J]. 航空制造技术, 2018,61(7):89-92.
LIU Xiaoyu, LI Zhe, ZHAI Fenlou. Study on impact resist-ance of plain aramid fabric/epoxy resin composites[J]. Aviation Manufacturing Technology, 2018,61(7):89-92.
[19] ZHU J, LI Y, PENG Q, et al. Stress wave propagation across jointed rock mass under dynamic extension and its effect on dynamic response and supporting of underground opening[J]. Tunnelling and Underground Space Technology, 2021,108(3):59-63.
[1] 陈小明, 李晨阳, 李皎, 谢军波, 张一帆, 陈利. 三维针刺技术研究进展[J]. 纺织学报, 2021, 42(05): 185-192.
[2] 姜生, 吉利梅. 聚乙烯醇增强氯化聚乙烯-受阻酚阻尼复合材料的制备及其性能[J]. 纺织学报, 2021, 42(04): 55-61.
[3] 陆振乾, 杨雅茹, 荀勇. 纤维对水泥基复合材料性能影响研究进展[J]. 纺织学报, 2021, 42(04): 177-183.
[4] 杨鑫, 邵慧奇, 蒋金华, 陈南梁. 六角形编织物的微观结构模拟[J]. 纺织学报, 2021, 42(04): 85-92.
[5] 胡静, 张开威, 李冉冉, 林金友, 刘宇清. 亚麻分层纳米纤维素的制备及其增强热电复合材料性能[J]. 纺织学报, 2021, 42(02): 47-52.
[6] 宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟. 玻璃纤维/光敏树脂复合材料的3D打印及其力学性能[J]. 纺织学报, 2021, 42(01): 73-77.
[7] 吕庆涛, 赵世波, 杜培健, 陈利. 树脂基纺织复合材料疲劳性能表征与分析方法研究现状[J]. 纺织学报, 2021, 42(01): 181-189.
[8] 杨甜甜, 王岭, 邱海鹏, 王晓猛, 张典堂, 钱坤. 三维机织角联锁SiCf/SiC复合材料弯曲性能及损伤机制[J]. 纺织学报, 2020, 41(12): 73-80.
[9] 林琛, 成玲. 缝合复合材料的研究进展及其在海洋领域的应用[J]. 纺织学报, 2020, 41(12): 166-173.
[10] 陈小明, 李皎, 张一帆, 谢军波, 李晨阳, 陈利. 回转结构预制体柔性针刺成型系统设计[J]. 纺织学报, 2020, 41(11): 156-161.
[11] 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173.
[12] 封端佩, 商元元, 李俊. 三维四向和五向编织复合材料冲击断裂行为的多尺度模拟[J]. 纺织学报, 2020, 41(10): 67-73.
[13] 马飞飞. 离散树脂成型复合材料的防刺与服用性能[J]. 纺织学报, 2020, 41(07): 67-71.
[14] 马莹, 何田田, 陈翔, 禄盛, 王友棋. 基于数字单元法的三维正交织物微观几何结构建模[J]. 纺织学报, 2020, 41(07): 59-66.
[15] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!