纺织学报 ›› 2021, Vol. 42 ›› Issue (06): 160-165.doi: 10.13475/j.fzxb.20201102906

• 机械与器材 • 上一篇    下一篇

棉纺精梳机钳板摆轴的动力学分析

李金键1, 任家智1(), 梁灼1, 贾国欣2   

  1. 1. 中原工学院 纺织学院, 河南 郑州 450007
    2. 河南工程学院 纺织工程学院, 河南 郑州 451191
  • 收稿日期:2020-11-13 修回日期:2021-01-27 出版日期:2021-06-15 发布日期:2021-06-28
  • 通讯作者: 任家智
  • 作者简介:李金键(1994—),男,硕士生。主要研究方向为高端精梳技术及装备。

Dynamic analyses on nipper pendulum shaft in cotton combers

LI Jinjian1, REN Jiazhi1(), LIANG Zhuo1, JIA Guoxin2   

  1. 1. College of Textiles, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
    2. School of Textiles, Henan University of Engineering, Zhengzhou, Henan 451191, China
  • Received:2020-11-13 Revised:2021-01-27 Published:2021-06-15 Online:2021-06-28
  • Contact: REN Jiazhi

摘要:

为分析棉纺精梳机钳板摆轴驱动力矩的变化规律,探讨了锡林梳理力、分离牵伸力、钳板机构惯性力、钳板摆轴惯性力及其与钳板摆轴驱动力矩关系。建立了钳板摆轴阻力矩及驱动力矩的数学模型,运用ADAMS软件对一个工作周期内钳板摆轴的阻力矩及驱动力矩的变化规律进行仿真模拟。结果表明:钳板摆轴的驱动力矩主要取决于钳板机构的惯性力对钳板摆轴的矩;随着精梳机的速度提高,钳板摆轴驱动力矩变化曲线的峰值及谷值迅速增大,钳板机构的惯性力对钳板摆轴驱动力矩影响增大;当精梳机的速度由300提高至500钳次/min时,驱动力矩曲线的峰值增大211%,钳板机构惯性力矩峰值与钳板摆轴驱动力矩峰值比值由63%增至74.1%。

关键词: 精梳机, 钳板摆轴, 钳板机构, 梳理力, 动力学

Abstract:

In order to understand driving torque of the nipper pendulum shaft of the cotton spinning comber, the carding force, separate drafting force, inertia force of the nipper mechanism, inertia force of the nipper pendulum shaft were analyzed and their relationships with the driving torque of the nipper pendulum shaft was investigated. Mathematical models for the drag torque and the driving torque in the nipper pendulum shaft were established, and the ADAMS software was used to simulate the variation mechanisms of the drag torque and driving torque of the nipper pendulum shaft during a working cycle. The results show that the driving torque of the nipper pendulum is mainly determined by the torque of inertial force in the nipper mechanism for the nipper pendulum shaft. The peak and valley values of the driving torque curve of the nipper pendulum shaft are increased rapidly with the increase of comber speed, and the influence of the inertial force in the nipper mechanism on the driving torque of the nipper pendulum shaft becomes more significant. When the speed of the comber is increased from 300 to 500 nippers/min, the peak value of the driving torque curve is increased by 211%, and the ratio of the peak inertia torque of the nipper mechanism to the peak driving torque of the nipper pendulum shaft is increased from 63% to 74.1%.

Key words: comber, nipper pendulum shaft, nipper mechanism, carding force, dynamics

中图分类号: 

  • TS112.2

图1

精梳机钳板机构"

图2

锡林梳理阶段"

图3

分离接合阶段"

图4

梳理力对钳板摆轴的矩"

图5

牵伸力对钳板摆轴的矩"

图6

钳板摆轴阻力矩变化曲线"

图7

钳板驱动力矩模型"

表1

精梳机一个工作单元钳板摆轴阻力矩的特征参数"

力矩 谷值/(N·m) 谷值/分度 峰值/(N·m) 峰值/分度
M1 0 24~35/5~24 0.87 38
M2 0 30~18 2.76 23.8
M3 -7.12 27.4 4.97 37
M4 -1.98 27.4 1.98 37
M -8.9 28.4 7.80 37

图8

速度对驱动力矩的影响"

表2

精梳机钳板摆轴总驱动力矩及阻力矩的特征参数"

速度/
(钳次·min-1)
力矩 谷值/
(N·m)
谷值/
分度
峰值/
(N·m)
峰值/
分度
300 M 0 -71.23 28.4 62.40 37
M 11 0 24~35/5~24 6.96 38
M 21 0 30~18 22.03 23.8
M 31 -56.92 27.4 39.78 37
M 41 -15.85 27.4 15.85 37
400 M 0 -118.18 28.4 119.25 37
M 11 0 24~35/5~24 6.96 38
M 21 0 30~18 22.03 23.8
M 31 -91.92 27.4 84.36 37
M 41 -28.17 27.4 28.17 37
500 M 0 -173.75 28.4 194.04 37
M 11 0 24~35/5~24 6.96 38
M 21 0 30~18 22.03 23.8
M 31 -132.08 27.4 143.71 37
M 41 -44.02 27.4 44.02 37

表3

阻力矩峰值与驱动力矩峰值的比值"

速度/(钳次·min-1) M 11 / M 0 M 21 / M 0 M 31 / M 0 M 41 / M 0
300 11.2 35.3 63.8 25.4
400 5.8 18.5 70.8 23.6
500 3.6 11.4 74.1 22.7
[1] 任家智. E7/5型精梳机钳板传动机构分析[J]. 棉纺织技术, 1998, 26(6):16-20.
REN Jiazhi. Analysis of nipper driving mechanism of E7/5 comber[J]. Cotton Textile Technology, 1998, 26(6):16-20.
[2] 李晶. 精梳机钳板机构的运动学分析[J]. 纺织机械, 2012(4):17-18.
LI Jing. Kinematics analysis of nipper mechanism in combing machine[J]. Textile Machinery, 2012(4):17-18.
[3] 任家智, 郁崇文. E7/6型精梳机曲柄半径对工艺性能的影响[J]. 纺织学报, 2004, 25(6):32-34.
RNE Jiazhi, YU Chongwen. Influence of crank radius of E7/6 comber on process performance[J]. Journal of Textile Research, 2004, 25(6):32-34.
[4] 贾国欣, 杨明霞, 任家智, 等. FA266型精梳机钳板机构及工艺参数运动学建模[J]. 纺织机械, 2009 (3):17-23.
JIA Guoxin, YANG Mingxia, REN Jiazhi, et al. Kinematic modeling of the nipper mechanism and process parameters of FA266 comber[J]. Textile Machinery, 2009 (3):17-23.
[5] 贾国欣, 杨明霞, 任家智, 等. 精梳机钳板机构的平衡与实验[J]. 河南工程学院学报, 2015(2),1-4.
JIA Guoxin, YANG Mingxia, REN Jiazhi, et al. Balance and experiment of nipper mechanism of combing machine[J]. Journal of Henan Institute of Engineering, 2015(2):1-4.
[6] 任家智, 贾国欣. 高效棉纺精梳关键技术[M]. 北京: 中国纺织出版社, 2017:19-28.
REN Jiazhi, JIA Guoxin. Key technology of high efficiency cotton spinning combing[M]. Beijing: China Textile & Apparel Press, 2017:19-28.
[7] 任家智. 纺纱工艺学[M]. 上海: 东华大学出版社, 2010:61-72.
REN Jiazhi. Technology[M]. Shanghai: Donghua University Press, 2010:61-72.
[8] 白予生. 精梳机锡林作用力初探[J]. 棉纺织技术, 1984, 12(1):2-7.
BAI Yusheng. Preliminary study on cylinder acting force of comber[J]. Cotton Textile Technology, 1984, 12(1):2-7.
[9] 徐春叶, 王树惠. 精梳机梳理力的动态测试[J]. 纺织学报, 1993, 14(11):8-11.
XU Chunye, WANG Shuhui. Dynamic test of carding force of comber[J]. Journal of Textile Research, 1993, 14(11):8-11.
[10] 哈尔滨工业大学理论力学教研室. 理论力学[M]. 7版. 北京: 高等教育出版社, 2009:6-33.
Department of Theoretical Mechanics, Harbin Institute of Technology. Theoretical mechanics[M]. 7th ed. Beijing: Higher Education Press, 2009:6-33.
[11] 任家智, 巫鳌飞, 贾国欣, 等. 棉纺精梳机分离罗拉动力学分析[J]. 棉纺织技术, 2020, 48(4):18-24.
REN Jiazhi, WU Aofei, JIA Guoxin, et al. Dynamic analysis of separating roller of cotton comber[J]. Cotton Textile Technology, 2020, 48(4):18-24.
[12] 刘鹏展, 贾国欣, 任家智. 精梳机钳板机构的振动分析[J]. 纺织学报, 2015, 36(9):108-113.
LIU Pengzhan, JIA Guoxin, REN Jiazhi, et al. Simulation and vibration of combing nipper mecha-nism[J]. Journal of Textile Research, 2015, 36(9):108-113.
[1] 杨婷婷, 高远博, 郑毅, 王学利, 何勇. 生物基聚酰胺56纤维的热降解动力学及其热解产物[J]. 纺织学报, 2021, 42(04): 1-7.
[2] 关震宇, 周文乐, 张玉梅, 王华平. 基于钛镁催化剂合成瓶用聚酯的动力学研究[J]. 纺织学报, 2021, 42(03): 64-70.
[3] 徐保律, 吴伟, 钟毅, 徐红, 毛志平. 有机溶剂对液体活性染料分散和水解稳定性影响的模拟研究[J]. 纺织学报, 2021, 42(02): 113-121.
[4] 陈咏, 王晶晶, 王朝生, 顾栋华, 乌婧, 王华平. 低聚物对生物基聚对苯二甲酸丙二醇酯结晶性能的影响[J]. 纺织学报, 2020, 41(10): 1-6.
[5] 王纯怡, 吴伟, 王健, 徐红, 毛志平. C.I.分散棕19在超临界CO2及水中溶解性的分子动力学模拟[J]. 纺织学报, 2020, 41(09): 95-101.
[6] 杨小兵, 程钧, 张守鑫, 姚红, 陆林, 丁松涛. 口罩过滤效率检测用颗粒物粒径的换算和标准比对[J]. 纺织学报, 2020, 41(08): 152-157.
[7] 宋慧君, 翟亚丽, 钞意元, 朱超宇. 蚕丝织物的栀子蓝色素染色[J]. 纺织学报, 2020, 41(06): 81-85.
[8] 张炜, 毛庆楷, 朱鹏, 柴雄, 李惠军. 乙醇/水体系中改性蚕丝织物的活性染料染色动力学和热力学[J]. 纺织学报, 2020, 41(06): 86-92.
[9] 吴伟, 陈小文, 钟毅, 徐红, 毛志平. 硫酸钠在低带液轧-焙-蒸活性染料染色中的作用[J]. 纺织学报, 2020, 41(05): 85-93.
[10] 钱成, 刘燕卿, 刘新金, 谢春萍, 苏旭中. 四罗拉集聚纺纱系统纤维运动数值模拟与分析[J]. 纺织学报, 2020, 41(03): 39-44.
[11] 肖琪, 王瑞, 孙红玉, 方纾, 李聃阳. 织物起毛起球机制的理论模型研究进展[J]. 纺织学报, 2020, 41(02): 172-178.
[12] 刘立东, 李新荣, 杨海鹏, 卜兆宁. 棉精梳机分离罗拉伺服驱动研究[J]. 纺织学报, 2020, 41(01): 158-164.
[13] 庄帅, 阳海, 安继斌, 胡倩, 张浩, 贺贵添, 易兵. 硫酸根自由基对酸性红37的降解动力学与机制[J]. 纺织学报, 2019, 40(11): 131-139.
[14] 陈咏, 王颖, 何峰, 王静, 朱志国, 董振峰, 王锐. 共聚型磷系阻燃聚酯聚合反应动力学及其性能[J]. 纺织学报, 2019, 40(10): 13-19.
[15] 韩虎, 李伟婷, 魏会芳, 王小艳, 孙昌, 许长海. 酸性染料易染氨纶的染色动力学[J]. 纺织学报, 2019, 40(08): 76-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!