纺织学报 ›› 2021, Vol. 42 ›› Issue (07): 69-75.doi: 10.13475/j.fzxb.20210202207

• 纤维材料 • 上一篇    下一篇

纳米二氧化钛涂覆聚对苯撑苯并二噁唑纤维的制备及其抗紫外光照射性能

谭艳君1,2(), 霍倩1,2, 刘姝瑞2   

  1. 1.西安工程大学 纺织科学与工程学院, 陕西 西安 710048
    2.陕西省功能材料染整创新工程中心, 陕西 西安 710048
  • 收稿日期:2021-02-07 修回日期:2021-04-13 出版日期:2021-07-15 发布日期:2021-07-22
  • 作者简介:谭艳君(1963—),女,教授。主要研究方向为功能性纺织材料、染整助剂及其工艺研发。E-mail: 448720091@qq.com
  • 基金资助:
    陕西省重点研发计划项目(2019GY-166)

Preparation and ultraviolet light resistance of poly(p-phenylene benzoxazole) fiber coated with nano titanium dioxide

TAN Yanjun1,2(), HUO Qian1,2, LIU Shurui2   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Shaanxi Engineering Research Center of Functional Materials Dyeing and Finishing, Xi'an, Shaanxi 710048, China
  • Received:2021-02-07 Revised:2021-04-13 Published:2021-07-15 Online:2021-07-22

摘要:

针对聚对苯撑苯并二噁唑(PBO)纤维经紫外光照射后强力下降的问题,首先采用氧等离子体对PBO纤维表面进行改性,提高其界面性能;然后在改性PBO纤维表面涂覆纳米TiO2及有机硅整理剂制备TiO2/PBO复合纤维;最后对复合纤维的结构和性能进行表征与分析。结果表明:当氧等离子体处理功率为200 W、处理时间为200 s时,PBO纤维表面有凹痕,纤维拉伸强力保持率大于90%,摩擦因数增大16%,接触角减小为52.7°,说明PBO纤维的表面润湿性能增大;当纳米TiO2与硅烷偶联剂质量比为1∶1时,TiO2/PBO复合纤维表面有沉积凸起的纳米TiO2颗粒;用紫外光照射200 h后,TiO2/PBO复合纤维的断裂强力下降率比PBO原纤减少30%,说明纳米TiO2涂覆后的PBO纤维抗紫外光照射性能提高。

关键词: 聚对苯撑并二噁唑纤维, 纳米TiO2, 界面性能, 紫外光照射, 拉伸强度

Abstract:

To solve the problem that the strength of poly(p-phenylenebenzoxazole) (PBO) fiber decreases after ultraviolet light irradiation, the surface of PBO fiber was modified by oxygen plasma to improve its interfacial properties.Nano-TiO2 and silicone finishing agent were coated on the surface of modified PBO fiber to prepare TiO2/PBO composites.The structure and properties of the composites were characterized and analyzed afterwards. The results show that when the oxygen plasma treatment power is 200 W and the treatment time is 200 s, the surface of PBO fiber developed dents leading to a 16% increase in friction coefficient between fibers, and the tensile strength retention rate of the fiber is kept at more than 90%.The contact angle decreases to 52.7 degrees, indicating an increase in surface wettability of the modified PBO fiber.When the mass ratio of nano-TiO2 to silane coupling agent is 1∶1, the surface of TiO2/PBO composite shows raised nano-TiO2 particles.After ultraviolet light irradiation for 200 h, the tensile strength of TiO2/PBO composite becomes 30% less than that of PBO fiber, which indicates that the ultraviolet light resistance of PBO fiber coated with nano-TiO2 is improved.

Key words: poly(p-phenylene benzoxazole) fiber, nano-TiO2, interfacial property, ultraviolet light irradiation, tensile strength

中图分类号: 

  • TQ342.7

图1

氧等离子体处理前后PBO纤维表面形貌"

图2

氧等离子体处理对PBO纤维断裂强力的影响"

图3

氧等离子体处理对PBO纤维动、静摩擦因数的影响"

图4

氧等离子体处理前后PBO纤维的红外光谱图"

图5

氧等离子体处理前后PBO纤维的润湿性能"

图6

纳米TiO2分散状态及TiO2/PBO复合纤维表面形貌 "

图7

紫外光照射时间对纳米TiO2/PBO复合纤维断裂强力的影响 "

图8

紫外光照射后PBO纤维断裂强力变化拟合曲线"

图9

紫外光照射后PBO纤维和TiO2/PBO复合纤维的红外光谱图 "

图10

紫外光照射前后PBO纤维和纳米TiO2/PBO复合纤维的XRD曲线 "

[1] 马春杰, 宁荣昌. PBO 纤维的研究及进展[J]. 高科技纤维与应用, 2004, 29(3):46-51.
MA Chunjie, NING Rongchang. Development and prospect of PBO fiber[J]. Hi-Tech Fiber & Application, 2004, 29(3):46-51.
[2] KITAGAWALL T, YABUKI K, YOUNG R J. An investigation into the relationship between processing, structure and properties for high-modulus PBO fibres:part Ⅰ:raman band shifts and broadening in tension and compression[J]. Polymer, 2001, 42(5):2101-2112.
doi: 10.1016/S0032-3861(00)00571-1
[3] 陈凤贵, 张明忠, 陈林飞, 等. 聚多巴胺修饰聚对苯撑苯并双口恶唑纤维增强其抗老化性与功能性[J]. 高分子材料科学与工程, 2020, 36(5):153-159.
CHEN Fenggui, ZHANG Mingzhong, CHEN Linfei, et al. Anti-ultraviolet aging property and functionality enhancement of poly(p-phenylene benzobisoxazole) fober coated with polydopamine[J]. Polymer Materials Science & Engineering, 2020, 36(5):153-159.
[4] FATEAM U K, GOTOH Y. Highly adhesive metal plating on Zylon® fiber via iodine pretreatment[J]. Appl Surf Sci, 2011, 258:883.
doi: 10.1016/j.apsusc.2011.09.020
[5] 李旭, 王鸣义, 钱军, 等. 高性能PBO纤维的开发和应用[J]. 合成纤维, 20l0, 39(6):1-5.
LI Xu, WANG Mingyi, QIAN Jun, et al. The development and application of high performance PBO fiber[J]. Synthetic Fiber in China, 20l0 39(6):1-5.
[6] 刘义鹤, 江洪. 高性能纤维产业发展现状[J]. 新材料产业, 2016(3):5-9.
LIU Yihe, JIANG Hong. Development status of high performance fiber industry[J]. Advanced Materials Industry, 2016(3):5-9.
[7] ZHANG C, XU H, JIANG Z, et al. Carbon nanotubes grafting PBO fiber: a study on the interfacial properties of epoxy composites[J]. Polymer Composites, 2012, 33:927-32.
doi: 10.1002/pc.v33.6
[8] 陈明新. PBO纤维表面等离子体改性及PBO/BMI复合材料界面粘结性能的研究[D]. 大连:大连理工大学, 2012: 7-9.
CHEN Mingxin. Study on surface modification of PBO fibers with plasma treatment and interfacial adhesion of PBO/BMI composite[D]. Dalian:Dalian University of Technology, 2012:7-9.
[9] MENDILI Y E, BARDEAU J F, RANDRIANANTOANDRO N, et al. Insights into the mechanism related to the phase transition from γ-Fe2O3 to α-Fe2O3 nanoparticles induced by thermal treatment and laser irradiation[J]. The Journal of Physical Chemistry C, 2012, 116:23785-23792.
doi: 10.1021/jp308418x
[10] 屈慕超, 张春华, 梁希凤, 等. PBO纤维和碳纤维混杂增强混凝土抗弯曲性能研究[J]. 高科技纤维与应用, 2009, 34(2):18-21.
QU Muchao, ZHANG Chunhua, LIANG Xifeng, et al. Study on the flexure properties of PBO/CF hybrid reinforced concrete[J]. Hi-Tech Fiber & Application, 2009, 34(2):18-21.
[11] 王斌, 金志浩, 丘哲明, 等. 偶联剂对PBO纤维/树脂界面粘接性能的影响[J]. 西安交通大学学报, 2002, 36(9):975-978.
WANG Bin, JIN Zhihao, QIU Zheming, et al. Effect of coupling agent oninterfacial adhesion of poly(p-phenylene benzobisoxazole) fibre/epoxy matrix composites[J]. Journal of Xi'an Jiaotong University, 2002, 36(9):975-978.
[12] TAO Z, DAYONG H, JUNHONG J, et al. Improvement of surface wettability andinterfacia adhesion ability of poly(p-phenylene benzobisoxazole) (PBO) fiber by incorporation of 2,5-dihydroxyterephthalic acid (DHTA)[J]. European Polymer Journal, 2009, 45:302-307.
doi: 10.1016/j.eurpolymj.2008.10.041
[13] SHAHBAZMOHAMADI S, JORDAN E H. Optimizing an SEM-based 3D surface imaging technique for recording bond coat surface geometry in thermal barrier coatings[J]. Measurement Science and Technology, 2012, 23:125601.
doi: 10.1088/0957-0233/23/12/125601
[14] LI Y, XIE H, TANG M, et al. The study on microscopic mechanical property of polycrystalline with SEM moiré method[J]. Optics and Lasers in Engineering, 2012, 50(17) :57-64.
doi: 10.1016/j.optlaseng.2011.07.016
[15] KLAVER J, DESBOIS G, URAI J L, et al. BIB-SEM study of the pore spacemorphology in early mature posidonia shale from the hils area[J]. Germany International Journal of Coal Geology, 2012, 103:12-25.
[16] 张承双. 氧气等离子体改性PBO纤维的表面及PBO/PPESK复合材料界面的影响[D]. 大连:大连理工大学, 2009:14-17.
ZHANG Chengshuang. Effects of oxygen plasma modification on surface properties of PBO[D]. Dalian: Dalian University of Technology, 2009:14-17
[17] LIU Z, CHEN P, HAN D, et al. Atmospheric air plasma treated PBO fibers wettability adhesion and aging behaviors[J]. Vacuum, 2013, 92:13-19.
doi: 10.1016/j.vacuum.2012.11.002
[18] PARK J M, KIM D S, KIM S R. Improvement of interfacial adhesion and nondestructive damage evaluation for plasma-treated PBO and Kevlar fibers/epoxy composites using micromechanical techniques and surface wettability[J]. Journal of Colloid and Interface Science, 2003, 264:431-445.
doi: 10.1016/S0021-9797(03)00419-3
[19] 王斌, 金志浩, 邱哲明, 等. 电晕处理对高性能PBO纤维的表面性能及其界面粘接性能的影响[J]. 复合材料学报, 2003, 20(4):101-106.
WANG Bin, JIN Zhihao, QIU Zheming, et al. Effect of corona treatment on the surface and interfacial adhesion properties of high performance poly(p-phenylene benzobisoxazole)(PBO)fiber[J]. Acta Materiae Compositae Sinica, 2003, 20(4):101-106.
[20] 王华, 谭艳君. 低温等离子体预处理对PBO纤维性能影响的研究[J]. 染整技术, 2016(6) :18-20.
WANG Hua, TAN Yanjun. Study on the effect of low temperature plasma pretreatment on the properties of PBO fibers[J]. Textile Dyeing and Finishing Journal 2016(6):18-20.
[21] KITAGAWA T, HIROKIASE, KAZUYUKIY, et al. Morphological study on poly-p-phenylene benzobis-oxalzole(PBO) fiber[J]. Polymer Science Part B: Polymer Physics, 1998, 36(1):8662-8672.
[22] SAITO Y, TAHARA A, IMAIZUMI M, et al. Polymer-coated fibrous materials as the stationary phase in packed capillary gas chromatography[J]. Analytical Chemistry, 2003, 75:5525-5531.
doi: 10.1021/ac030052h
[1] 伏立松, 张淑洁, 王瑞, 杨兆薇, 荆梦轲. 管道修复用涤纶/苎麻非织造复合材料拉伸强度[J]. 纺织学报, 2020, 41(02): 52-57.
[2] 韩烨, 张辉, 朱国庆, 武海良. 聚乙二醇对硫酸钛水热改性涤纶光催化性能的影响[J]. 纺织学报, 2019, 40(10): 33-41.
[3] 宋星, 祝成炎, 蔡冯杰, 吕智宁, 田伟. 碱处理对涤纶/光敏树脂复合材料力学性能的影响[J]. 纺织学报, 2019, 40(07): 97-102.
[4] 刘冰倩, 盛丹, 潘恒, 曹根阳. N,N-二甲基乙酰胺/氯化钙体系对热致液晶聚芳酯纤维结构及性能的影响[J]. 纺织学报, 2019, 40(04): 15-20.
[5] 张梅 贾紫璇 孙小娟 李宏伟. 石墨烯纤维的湿法纺制及其性能[J]. 纺织学报, 2018, 39(01): 1-5.
[6] 吴松 吕晓龙 武春瑞 高启君 张昊 李振东 孔晓. 拉伸残余应力对聚偏氟乙烯纤维力学性能的影响[J]. 纺织学报, 2017, 38(07): 28-33.
[7] 汪洋 吕晓龙 武春瑞 高启君 张如意. 高强度聚偏氟乙烯纤维的熔融纺丝法制备[J]. 纺织学报, 2015, 36(06): 1-6.
[8] 曹俊 申兴丛 裘鹏飞 戚栋明. 溶胶-凝胶法制备的钛溶胶形态及其光催化性能[J]. 纺织学报, 2014, 35(5): 7-0.
[9] 单鸿波 徐方 孙志宏 于海燕. 管状复合材料拉伸性能测试及夹具原型系统[J]. 纺织学报, 2013, 34(9): 134-0.
[10] 贾长兰. 纳米TiO2改性丝素膜中的纳米颗粒粒径分析[J]. 纺织学报, 2013, 34(11): 24-0.
[11] 尤丽霞;张羡;李丹;李海祥;周文龙. 超声波处理对棉织物污渍去除的影响[J]. 纺织学报, 2011, 32(4): 91-94.
[12] 钱坤;曹海建;盛东晓;庄粟裕. 低温等离子体处理对芳纶界面性能的影响[J]. 纺织学报, 2010, 31(10): 10-13.
[13] 沈巨磊;于永玲;吕丽华. 基于废弃混纺纤维循环利用的板材成型技术及其性能[J]. 纺织学报, 2010, 31(1): 28-31.
[14] 楼利琴;傅雅琴. 表面处理对亚麻织物/PVC复合材料界面性能的影响[J]. 纺织学报, 2009, 30(9): 55-58.
[15] 姜生. 等离子体处理后UHMWPE纤维与LDPE复合材料的性能[J]. 纺织学报, 2007, 28(9): 57-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!