纺织学报 ›› 2021, Vol. 42 ›› Issue (11): 179-186.doi: 10.13475/j.fzxb.20201004708

• 综合述评 • 上一篇    下一篇

静电纺纳米纤维光催化剂性能增强方法的研究进展

周园园1,2,3, 郑煜铭1,2, 吴小琼1,2, 邵再东1,2()   

  1. 1.中国科学院 城市环境研究所, 福建 厦门 361021
    2.中国科学院 城市污染物转化重点实验室, 福建 厦门 361021
    3.中国科学院大学, 北京 100049
  • 收稿日期:2020-10-26 修回日期:2021-04-25 出版日期:2021-11-15 发布日期:2021-11-29
  • 通讯作者: 邵再东
  • 作者简介:周园园(1995—),女,硕士生。主要研究方向为静电纺功能催化材料。
  • 基金资助:
    国家自然科学基金项目(51578525);厦门市科技计划项目(3502Z20193074)

Research progress of performance enhancement methods for electrospun nanofiber-based photocatalyst

ZHOU Yuanyuan1,2,3, ZHENG Yuming1,2, WU Xiaoqiong1,2, SHAO Zaidong1,2()   

  1. 1. Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
    2. Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
    3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-10-26 Revised:2021-04-25 Published:2021-11-15 Online:2021-11-29
  • Contact: SHAO Zaidong

摘要:

传统的纳米粉体光催化剂在使用过程中极易团聚,易流失,且难以分离回收,存在二次污染风险,光催化作为一种可高效利用太阳能进行污染物降解的高级氧化技术,具有环境友好的特点。首先介绍了单一组分静电纺纳米纤维光催化剂的研究进展及其存在的问题;在此基础上重点综述了增强改性静电纺纳米纤维光催化剂性能的方法,主要包括元素掺杂、表面贵金属负载、半导体复合、染料敏化以及接枝共轭聚合物,归纳总结了各种方法的合成手段、原理、优缺点和改进的方向。最后提出:未来应在开发具有高比表面积、高电子-空穴分离效率的新型光催化材料,以及具有多功能协同作用和高力学强度的新型光催化剂方面继续进行深入研究。

关键词: 静电纺丝, 光催化技术, 纳米纤维光催化剂, 污染物降解, 复合改性

Abstract:

The traditional nano-powder photocatalyst is prone to agglomerate during use,easy to be drained away and difficult to separate and recover, further causing secondary pollution.Photocatalysis is an advanced oxidation technology that can efficiently use solar energy to degrade pollutants, and is environmental friendly. This paper briefly introduced the research progress and existing problems of the single-component electrospun nanofiber-based photocatalyst. Then on the basis of the existing problems, the methods for enhanced modification the performance of the electrospun nanofiber-based photocatalyst were summarized,including element doping, surface precious metal deposition, semiconductor recombination, dye sensitization and graft conjugated polymers. The synthesis methods, principles, advantages, disadvantages and improvement directions of various methods were summarized. It is proposed that further research should be carried out in the development of new photocatalytic materials with high specific surface area and high electron hole separation efficiency, as well as new photocatalysts with multi-functional synergy and high mechanical strength.

Key words: electrospinning, photocatalytic technology, nanofiber-based photocatalyst, pollutants degradation, compound modification

中图分类号: 

  • TB34

图1

静电纺纳米纤维光催化剂性能增强方法示意图"

表1

纳米纤维光催化剂性能增强方法的原理、优缺点及改进方向"

性能增强方法 原理 优点 缺点 改进方向
元素掺杂 离子作为捕获中心,形成杂质能级,造成晶格缺陷 稳定性好 只能吸收较低波段的可见光,缺陷位置导致电子-空穴对向表面转移效率降低 优化元素掺杂种类及方式提高光吸收范围
表面贵金属负载 改变光催化剂表面性质和体系电子分布 操作简单,催化性能佳 贵金属被包埋导致吸光效率低,贵金属易脱落及分布不均匀 制备多孔纳米纤维提高暴露活性位点,结合不同工艺提高贵金属的牢固性
半导体复合 形成电位差,促进电子-空穴对的分离 方法简单,结构可控 难以同时兼具光生载流子有效的电荷分离和强氧化还原能力 设计匹配的异质结结构,减少光生载流子的迁移距离,保留其氧化还原能力
染料敏化 染料在可见光区域的强吸收效应 结构可调,合成简单,价格便宜 敏化剂脱附及敏化剂光降解 调整染料结构或添加辅助试剂
接枝共轭聚合物 调节光催化剂的内部电子结构,抑制光生电子-空穴对的复合 适用范围广,反应条件不受限 聚合物附着性差、易脱附 聚合物接枝适当的支链或功能性侧基
[1] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358):37-38.
doi: 10.1038/238037a0
[2] HAN G Q, JIN Y H, BURGESSR A, et al. Visible-light-driven valorization of biomass inter-mediates integrated with H2 production catalyzed by ultrathin Ni/CdS nanosheets[J]. J Am Chem Soc, 2017, 139(44):15584-15587.
doi: 10.1021/jacs.7b08657
[3] CHU K H, YE L Q, WANG W, et al. Enhanced photocatalytic hydrogen production from aqueous sulfide/sulfite solution by ZnO0.6S0.4with simultaneous dye degradation under visible-light irradiation[J]. Chemosphere, 2017, 183:219-228.
doi: 10.1016/j.chemosphere.2017.05.112
[4] LIN Z Y, LI L H, YU L L, et al. Dual-functional photocatalysis for hydrogen evolution from industrial wastewaters[J]. Phys Chem Chem Phys, 2017, 19:8356-8362.
doi: 10.1039/C7CP00250E
[5] TAKEDA H, OHASHI K, SEKINE A, et al. Photocatalytic CO2 reduction using Cu (I) photosensitizers with a Fe(II) catalyst[J]. J Am Chem Soc, 2016, 138(13):4354-4357.
doi: 10.1021/jacs.6b01970
[6] PAN Y X, YOU Y, XIN S, et al. Photocatalytic CO2 reduction by carbon-coated indium-oxide nanobelts[J]. J Am Chem Soc, 2017, 139(11):4123-4129.
doi: 10.1021/jacs.7b00266
[7] KUEHNEL M F, ORCHARD K L, DALLE K E, et al. Selective photocatalytic CO2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals[J]. J Am Chem Soc, 2017, 139(21):7217-7223.
doi: 10.1021/jacs.7b00369
[8] SCANDURA G, CIRIMINNA R, OZER L Y, et al. Antifouling and photocatalytic antibacterial activity of the aquasun coating in seawater and related media[J]. ACS Omega, 2017, 2:7568-7575.
doi: 10.1021/acsomega.7b01237
[9] NAGAY B E, DINI C, CORDEIRO J M, et al. Visible-light-induced photocatalytic and antibacterial activity of TiO2codoped with nitrogen and bismuth: new perspectives to control implant-biofilm-related diseases[J]. ACS Appl Mater Inter, 2019, 11(20):18186-18202.
doi: 10.1021/acsami.9b03311
[10] ZHANG C, GU Y N, TENG G X, et al. Designation of double-shell Ag/AgCl/G-ZnFe2O4 nanocube with enhanced light absorption and superior photocatalytic antibacterial activity[J]. ACS Appl Mater Inter, 2020, 12(26):29883-29898.
[11] MATTHEWS RW. Photooxidation of organic material in aqueous suspensions of titanium dioxide[J]. Water Res, 1986, 20(5):569-578.
doi: 10.1016/0043-1354(86)90020-5
[12] EL-MORSI TM, BUDAKOWSKI WR, ABD-EL-AZIZ AS, et al. Photocatalytic degradation of 1,10-dichlorodecane in aqueous suspensions of TiO2: areaction of adsorbed chlori-nated alkane with surface hydroxyl radicals[J]. Environ Sci Technol, 2000, 34(6):1018-1022.
doi: 10.1021/es9907360
[13] ESPLUGAS S, GIMENEZ J, CONTRERAS S, et al. Comparison of different advanced oxidation processes for phenol degradation[J]. Water Res, 2002, 36(4):1034-1042.
doi: 10.1016/S0043-1354(01)00301-3
[14] DONG H R, ZENG G M, TANG L, et al. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures[J]. Water Res, 2015, 79:128-146.
doi: 10.1016/j.watres.2015.04.038
[15] KU Y, JUNG I L. Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide[J]. Water Res, 2001, 35(1):135-142.
doi: 10.1016/S0043-1354(00)00098-1
[16] KUMAR V, WANCHOO R K, TOOR A P. Photocatalytic reduction and crystallization hybrid system for removal and recovery of lead (Pb)[J]. Ind Eng Chem Res, 2021, 60(24):8901-8910.
doi: 10.1021/acs.iecr.1c01169
[17] SELLI E, GIORGI A D, BIDOGLIO G. Humic acid-sensitized photoreduction of Cr(VI) on ZnO particles[J]. Environ Sci Technol, 1996, 30(2):598-604.
doi: 10.1021/es950368+
[18] JACOBY W A, BLAKE D M, NOBLERD, et al. Kinetics of the oxidation of trichloroethylene in air via hetero-geneous photocatalysis[J]. J Catal, 1995, 157(1):87-96.
doi: 10.1006/jcat.1995.1270
[19] OBEE T N. Photooxidation of sub-parts-per-million tolu-ene and formaldehyde levels on titania using a glass-plate reactor[J]. Environ Sci Technol, 1996, 30(12):3578-3584.
doi: 10.1021/es9602713
[20] WANG L L, ZHAO Y C, ZHANG J Y. Photochemical removal of SO2 over TiO2based nanofibers by a dry photocatalytic oxidation process[J]. Energ Fuel, 2017, 31(9):9905-9914.
doi: 10.1021/acs.energyfuels.7b01514
[21] SEREDYCH M, MABAYOJE O, BANDOSZ T J. Interactions of NO2 with zinc (hydr)oxide/graphene phase composites: visible light enhanced surface reactivity[J]. J Phys Chem, 2012, 116(3):2527-2535.
[22] NGUYEN S N, TRUONG T K, YOU S J, et al. Investigation on photocatalytic removal of NO under visible light over Cr-doped ZnO nanoparticles[J]. ACS Omega, 2019, 4(7):12853-12859.
doi: 10.1021/acsomega.9b01628
[23] WANG S L, LI G S, LEUNG M K H, et al. Controlling charge transfer in quantum-size titania for photocatalytic applications[J]. Appl Catal B: Environ, 2017, 215(5):85-92.
doi: 10.1016/j.apcatb.2017.05.043
[24] CAO T P, LI Y J, WANG C H, et al. A facile in situ hydrothermal method to SrTiO3/TiO2 nanofiber heterostructures with high photocatalytic activity[J]. Langmuir, 2011, 27(6):2946-2952.
doi: 10.1021/la104195v
[25] GAO F, LU Q Y, PANG H, et al. Sandwich-type polymer nanofiber structure of poly(furfuryl alcohol): an effective template for ordered porous films[J]. J Phys Chem B, 2009, 113(37):12477-12481.
doi: 10.1021/jp9048499
[26] BAE S Y, SEO H W, PARK J. Vertically aligned sulfur-doped ZnO nanowires synthesized via chemical vapor deposition[J]. J Phys Chem B, 2004, 108(17):5206-5210.
doi: 10.1021/jp036720k
[27] SANKAR S S, KARTHICK K, SANGEETHA K, et al. Transition-metal-based zeolite imidazolate framework nanofibers via an electrospinning approach: a review[J]. ACS Omega, 2020, 5:57-67.
doi: 10.1021/acsomega.9b03615
[28] DING Z W, SALIM A, ZIAIE B. Selective nanofiber deposition through field-enhanced electrospinning[J]. Langmuir, 2009, 25(17):9648-9652.
doi: 10.1021/la901924z
[29] ZHAO G, LIU S W, LU Q F, et al. Controllable synjournal of Bi2WO6 nanofibrous mat by electrospinning and enhanced visible photocatalytic degradation performances[J]. Ind Eng Chem Res, 2012, 51:10307-10312.
doi: 10.1021/ie300988z
[30] ZHAN S H, CHEN D R, JIAO X L, et al. Long TiO2hollow fibers with mesoporous walls: sol-gel combined electrospun fabrication and photocatalytic properties[J]. J Phys Chem B, 2006, 110:11199-11204.
doi: 10.1021/jp057372k
[31] LIU G S, LIU S W, LU Q F, et al. Synjournal of mesoporous BiPO4 nanofibers by electrospinning with enhanced photocatalytic performances[J]. Ind Eng Chem Res, 2014, 53(33):13023-13029.
doi: 10.1021/ie4044357
[32] MALI S S, KIM H, JANG W Y, et al. Novel synjournal and characterization of mesoporous ZnO nanofibers by electrospinning technique[J]. ACS Sustainable Chem Eng, 2013, 1(9):1207-1213.
doi: 10.1021/sc400153j
[33] SONG J, WANG X Q, YAN J H, et al. Soft Zr-doped TiO2nanofibrous membranes with enhanced photocatalytic activity for water purification[J]. Sci Rep, 2017, 7:1636-1648.
doi: 10.1038/s41598-017-01969-w
[34] XIAO G, HUANG X, LIAO X P, et al. One-pot facile synjournal of cerium-doped TiO2 mesoporous nanofibers using collagen fiber as the biotemplate and its application in visible light photocatalysis[J]. J Phys Chem C, 2013, 117(19):9739-9746.
doi: 10.1021/jp312013m
[35] MONDAL K, BHATTACHARYYA S, SHARMA A. Photocatalytic degradation of naphthalene by electrospun mesoporous carbon-doped anatase TiO2nanofiber mats[J]. Ind Eng Chem Res, 2014, 53(49):18900-18909.
doi: 10.1021/ie5025744
[36] CAMILLO D, RUGGIERI F, SANTUCCI S, et al. N-doped TiO2 nanofibers deposited by electrospinning[J]. J Phys Chem C, 2012, 116(34):18427-18431.
doi: 10.1021/jp302499n
[37] KAEWSAENEE J, VISAL-ATHAPHAND P, SUPAPHOL P, et al. Effects of magnesium and zirconium dopants on characteristics of titanium(IV) oxide fibers prepared by combined sol-gel and electrospinning techniques[J]. Ind Eng Chem Res, 2011, 50(13):8042-8049.
doi: 10.1021/ie102527p
[38] WANG Y T, CHENG J, YU S Y, et al. Synergistic effect of N-decorated and Mn2+ doped ZnO nanofibers with enhanced photocatalytic activity[J]. Sci Rep, 2016, 6:32711-32721.
doi: 10.1038/srep32711
[39] PRADHAN A C, UYAR T. Electrospun Fe2O3 entrenched SiO2 supported N and S dual incorporated TiO2 nanofibers derived from mixed polymeric template/surfactant: enriched mesoporosity within nanofibers,effective charge separation,and visible light photocatalysis activity[J]. Ind Eng Chem Res, 2011, 50:8042-8049.
doi: 10.1021/ie102527p
[40] LIU Y B, ZHU G Q, GAO J Z, et al. A novel synergy of Er3+/Fe3+ co-doped porous Bi5O7I microspheres with enhanced photocatalytic activity under visible-light irradiation[J]. Appl Catal B: Environ, 2017, 205(15):421-432.
doi: 10.1016/j.apcatb.2016.12.061
[41] DUAN Z J, HUANG Y Z, ZHANG D K, et al. Electrospinning fabricating Au/TiO2 network-like nanofibers as visible light activated photocatalyst[J]. Sci Rep, 2019, 9(1):8008-8016.
doi: 10.1038/s41598-019-44422-w
[42] NALBANDIAN M J, GREENSTEIN K E, SHUAI D M, et al. Tailored synjournal of photoactive TiO2nanofibers and Au/TiO2nanofiber composites: structure and reactivity optimization for water treatment applications[J]. Environ Sci Technol, 2015, 49(3):1654-1663.
doi: 10.1021/es502963t
[43] FORMO E, LEE E, CAMPBELL D, et al. Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications[J]. Nano Lett, 2008, 8(2):2668-672.
[44] SHANG M, WANG W Z, ZHANG L, et al. 3D Bi2WO6/TiO2 hierarchical heterostructure: controllable synjournal and enhanced visible photocatalytic degradation performances[J]. J Phys Chem C, 2009, 113(33):14727-14731.
doi: 10.1021/jp9045808
[45] ZHANG Z Y, SHAO C L, LI X H, et al. Electrospun nanofibers of ZnO-SnO2 heterojunction with high photocatalytic activity[J]. J Phys Chem C, 2010, 114(17):7920-7925.
doi: 10.1021/jp100262q
[46] ZHAGN T, SHEN Y, QIU Y H, et al. Facial synjournal and photoreaction mechanism of BiFeO3/Bi2Fe4O9 heterojunction nanofibers[J]. ACS Sustainable Chem Eng, 2017, 5(6):4630-4636.
doi: 10.1021/acssuschemeng.6b03138
[47] HOU H L, SHAGN M H, WANG L, et al. Efficient photocatalytic activities of TiO2hollow fibers with mixed phases and mesoporous walls[J]. Sci Rep, 2015, 5:15228-15237.
doi: 10.1038/srep15228
[48] LV C, CHEN G, SUN J X, et al. Construction of α-β phase junction on Bi4V2O11 via electrospinning retardation effect and its promoted photocatalytic performance[J]. Inorg Chem, 2016, 55(10):4782-4789.
doi: 10.1021/acs.inorgchem.6b00130
[49] GHAFOOR S, ATA S, MAHMOO N, et al. Photosensitization of TiO2 nanofibers by Ag2S with the synergistic effect of excess surface Ti3+ states for enhanced photocatalytic activity under simulated sunlight[J]. Sci Rep, 2017, 7(255):2045-2322.
doi: 10.1038/s41598-017-01960-5
[50] SUCHANEK J P HENKA P, et al. Effect of temperature on photophysical properties of polymeric nanofiber materials with porphyrin photosensitizers[J]. J Phys Chem B, 2014, 118(23):6167-6174.
doi: 10.1021/jp5029917
[51] QIN D D, LU W Y, WANG X Y, et al. Graphitic carbon nitride from burial to re-emergence on polyethylene terephthalate nanofibers as an easily recycled photocatalyst for degrading antibiotics under solar irradiation[J]. ACS Appl Mater Inter, 2016, 8(39):25962-25970.
doi: 10.1021/acsami.6b07680
[52] YANG Y C, WEN J W, WEI J H, et al. Polypyrrole-decorated Ag-TiO2 nanofibers exhibiting enhanced photocatalytic activity under visible light illumination[J]. ACS Appl Mater Inter, 2013, 5(13):6201-6207.
doi: 10.1021/am401167y
[1] 许仕林, 杨世玉, 张亚茹, 胡柳, 胡毅. 热塑性聚氨酯/特氟龙无定形氟聚物超疏水纳米纤维膜制备及其性能[J]. 纺织学报, 2021, 42(12): 42-42.
[2] 贾琳, 王西贤, 李环宇, 张海霞, 覃小红. 聚丙烯腈/BaTiO3复合纳米纤维过滤膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 34-41.
[3] 王曙东, 董青, 王可, 马倩. 还原氧化石墨烯增强聚乳酸纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 28-33.
[4] 吴钦鑫, 侯成义, 李耀刚, 张青红, 秦宗益, 王宏志. 辐射降温纳米纤维医用防护服面料及传感系统集成[J]. 纺织学报, 2021, 42(09): 24-30.
[5] 权震震, 王亦涵, 祖遥, 覃小红. 多曲面喷头静电纺射流形成机制与成膜特性[J]. 纺织学报, 2021, 42(09): 39-45.
[6] 曹元鸣, 郑蜜, 李一飞, 翟旺宜, 李丽艳, 常朱宁子, 郑敏. 二硫化钼/聚氨酯复合纤维膜的制备及其光热转换性能[J]. 纺织学报, 2021, 42(09): 46-51.
[7] 张亚茹, 胡毅, 程钟灵, 许仕林. 聚丙烯腈基Si/C/碳纳米管复合碳纳米纤维膜的制备及其储能性能[J]. 纺织学报, 2021, 42(08): 49-56.
[8] 叶成伟, 汪屹, 徐岚. 钴基分级多孔复合碳材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(08): 57-63.
[9] 阳智, 刘呈坤, 吴红, 毛雪. 木质素/聚丙烯腈基碳纤维的制备及其表征[J]. 纺织学报, 2021, 42(07): 54-61.
[10] 郭凤云, 过子怡, 高蕾, 郑霖婧. 热粘结复合纤维人造血管支架的制备及其性能[J]. 纺织学报, 2021, 42(06): 46-50.
[11] 代阳, 杨楠楠, 肖渊. 静电纺碳纳米管电阻式柔性湿度传感器的制备及其性能[J]. 纺织学报, 2021, 42(06): 51-56.
[12] 陈玉, 夏鑫. 锂离子电池液态GaSn自修复负极材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(06): 57-62.
[13] 张蓓蕾, 沈明武, 史向阳. 静电纺短纤维的制备及其生物医学应用[J]. 纺织学报, 2021, 42(05): 1-8.
[14] 竺哲欣, 马晓吉, 夏林, 吕汪洋, 陈文兴. 氯离子协同增强十六氯铁酞菁/聚丙烯腈复合纳米纤维光催化降解性能[J]. 纺织学报, 2021, 42(05): 9-15.
[15] 张林, 李至诚, 郑钦元, 董隽, 章寅. 基于静电纺丝的柔性各向异性应变传感器的制备及其性能[J]. 纺织学报, 2021, 42(05): 38-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[2] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[3] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[4] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[5] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[6] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[7] 冯宪. 漫谈未来服装的发展方向[J]. 纺织学报, 2004, 25(02): 119 -120 .
[8] 姚玉元;陈文兴;张利;潘勇. 催化氧化型消臭蚕丝纤维的研究[J]. 纺织学报, 2004, 25(03): 7 -8 .
[9] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[10] 黄小华;沈鼎权. 菠萝叶纤维脱胶工艺及染色性能[J]. 纺织学报, 2006, 27(1): 75 -77 .