纺织学报 ›› 2024, Vol. 45 ›› Issue (02): 59-66.doi: 10.13475/j.fzxb.20230706101

• 纺织工程 • 上一篇    下一篇

柔性力感知电子织物的制备及其人体运动监测系统构建

闫鹏翔, 陈富星(), 刘红, 田明伟   

  1. 青岛大学 纺织服装学院, 山东 青岛 266071
  • 收稿日期:2023-07-25 修回日期:2023-12-06 出版日期:2024-02-15 发布日期:2024-03-29
  • 通讯作者: 陈富星(1987—),女,讲师,博士。主要研究方向为智能纺织品与产业用纺织品。E-mail:fxchen@qdu.edu.cn
  • 作者简介:闫鹏翔(1997—),男,硕士生。主要研究方向为智能纺织品。
  • 基金资助:
    中国纺织工业联合会“纺织之光”应用基础研究项目(J202004);山东省自然科学基金青年项目(ZR2022QE174);山东省自然科学基金青年项目(ZR2023YQ037);泰山学者工程专项经费项目(tsqn202211116);山东省科技型中小企业创新能力提升工程项目(2023TSGC1006);青岛市自然科学基金项目(23-2-1-249-zyyd-jch)

Preparation of flexible force-sensing electronic textiles and construction of human motion monitoring system

YAN Pengxiang, CHEN Fuxing(), LIU Hong, TIAN Mingwei   

  1. College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, China
  • Received:2023-07-25 Revised:2023-12-06 Published:2024-02-15 Online:2024-03-29

摘要:

为开发步态失稳监测系统和压疮监测与预防床垫等老龄健康维护产品,研发了一种用于人体运动监测的柔性压阻式压力传感电子织物,2个电极层织物通过正交配置形成传感点阵,由石墨烯与离子液体改性处理的棉织物构成中间导电层。实验结果表明:该电子织物在0~5 kPa压力范围的传感灵敏度为0.15 kPa-1,且呈现良好的线性关系,加载、卸载时具有快速响应时间(20、30 ms),经校准实验所得压力映射图呈现良好均匀性,传感性能可重复8 000次循环。将自主设计的上位机软件、下位机电路等集成智能电子织物压力分布监测系统,可达成对不同身体部位的压力大小及其分布情况的实时连续监测,未来可用于步态分析、压疮监测与预防床垫、人体运动特征等辨识。

关键词: 纺织基压力传感器, 智能电子织物, 传感性能, 石墨烯, 监测系统

Abstract:

Objective This study focuses on the preparation of flexible force-sensing electronic textiles and the development of a human motion monitoring system. The objective is to provide a better method to monitor and analyze health physiological information, and to generate health indications.

Method The intelligent electronic fabric used in this study employed piezoresistive sensing as its underlying principle. Its structure followed a "sandwich″ design, consisting of a conductive layer and two electrode layers. The upper and lower electrode layers, made of cotton yarns and silver-plated yarns, were intricately laminated with a 1/1 plain woven conductive fabric and sewn together. The intermediate conductive layer is achieved by modifying woven cotton fabric with a combined solution of graphene and ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4), resulting in a conductive fabric.

Results The output-input characteristic curve of the fabric sensor exhibited clear piecewise linearity, with the slope of the curve decreasing as pressure increases within the pressure range of 0 to 140 kPa. Notably, high sensitivity was observed in the pressure range of 0 to 5 kPa (S1=0.15 kPa-1), followed by a decrease in sensitivity in the pressure range of 6 to 15 kPa (S2=0.07 kPa-1), and a decrease in sensitivity in the pressure range of 16 to 40 kPa (S3=0.01 kPa-1). The sensor demonstrated a fast response time of 20 ms/30 ms and minimal hysteresis error, respectively, during the compression and release processes, enabling real-time capture of human dynamic motion signals. The flexible electronic fabric exhibited stable resistance even after 8 000 cycles of pressure application, demonstrating good mechanical durability, as seen. It was also less affected by washing, as observed from the resistance change curve after washing soaking. The fabric possessed suitable breathability, effectively dissipating body heat and maintaining a refreshing skin surface. Additionally, the thermal and wet comfort requirements were met with a measured moisture permeability of 6.4×103 g/(m2·24 h).

Conclusion Through the design of a composite structure, a flexible piezoresistive pressure sensing electronic fabric with a "sandwich″ structure has been successfully developed. This innovative fabric incorporates a sensing array, enabling real-time collection of pressure levels and distribution across different parts of the body. Comprehensive testing has demonstrated that the electronic fabric exhibits remarkable sensing performance and wearing comfort. The results indicate that the fabric possesses high sensitivity (approximately 0.15 kPa-1 within the pressure range of 0-5 kPa), fast response time, minimal hysteresis, excellent repeatability, and favorable thermal and wet comfort properties. Furthermore, by integrating the pressure sensing electronic fabric with self-designed electric circuits and computer software, an intelligent electronic fabric pressure distribution monitoring system has been realized. This system generates pressure mapping maps with uniform appearance and high resolution, thereby validating the reliability of intelligent electronic fabrics in monitoring human motion signals. The potential applications of this technology are vast, encompassing healthcare and sports, and it holds great promise for the future in various fields.

Key words: textile-based pressure sensor, intelligent electronic textile, sensing performance, graphene, intelligent pressure distribution monitoring system

中图分类号: 

  • TM242

图1

柔性力感知电子织物的结构示意图及制备流程"

表1

织物规格参数表"

结构层 织物
组织
密度/(根·(10 cm)-1) 面密度/
(g·m-2)
厚度/
mm
经密 纬密
电极层 平纹 598 354 90 0.20
导电层 平纹 600 350 94 0.22

图2

柔性力感知电子织物不同形态下实物图"

图3

棉纤维SEM照片"

图4

柔性力感知电子织物的传感性能"

图5

信号采集系统设计"

图6

人体站立平衡测试系统的显示界面"

图7

不同质量方形重物下的压力映射图"

图8

人体站立实时测试"

[1] LI Y, ZHANG M, HU X, et al. Graphdiyne-based flexible respiration sensors for monitoring human health[J]. Nano Today, 2021. DOI: 10.1016/j.nantod.2021.101214.
[2] YANG G, TIAN M, HUANG P, et al. Flexible pressure sensor with a tunable pressure-detecting range for various human motions[J]. Carbon, 2021. DOI: 10.1016/j.carbon.2020.11.066.
[3] ZHANG Y, ZHU X, LIU Y, et al. Ultra-stretchable monofilament flexible sensor with low hysteresis and linearity based on MWCNTs/E coflex composite materials[J]. Macromolecular Materials and Engineering, 2021. DOI: 10.1002/mame.202100113.
[4] CHOI S, YOON K, LEE S, et al. Conductive hierarchical hairy fibers for highly sensitive, stretchable, and water-resistant multimodal gesture-distinguishable sensor, VR applications[J]. Advanced Functional Materials, 2019. DOI: 10.1002/adfm.201905808.
[5] 李港华, 王航, 史宝会, 等. 柔性电子织物的构筑及其压力传感性能[J]. 纺织学报, 2023, 44 (2): 96-102.
LI Ganghua, WANG Hang, SHI Baohui, et al. The construction of flexible electronic fabrics and their pressure sensing performance[J]. Journal of Textile Research, 2023, 44(2): 96-102.
doi: 10.1177/004051757404400203
[6] 董裕, 李秋瑾, 巩继贤, 等. 离子凝胶-织物基柔性压力传感器制备与应用[J]. 针织工业, 2023(7): 23-27.
DONG Yu, LI Qiujin, GONG Jixian, et al. Preparation and application of ionic gel fabric based flexible pressure sensor[J]. Knitting Industries, 2023 (7): 23-27.
[7] MANNSFELD S C B, TEE B C K, STOLTENBERG R M, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers[J]. Nature Materials, 2010. DOI: 10.1038/NMAT2834.
[8] YAMADA T, HAYAMIZU Y, YAMAMOTO Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection[J]. Nature Nanotechnology, 2011. DOI: 10.1038/nnano.2011.36.
[9] JAEGYU K, SEOUNGWOO B, SANGRYUN L, et al. Cost-effective and strongly integrated fabric-based wearable piezoelectric energy harvester[J]. Nano Energy, 2020. DOI: 10.1016/j.nanoen.2020.104992.
[10] ZOU J D, ZHANG M, HUANG J R, et al. Coupled supercapacitor and triboelectric nanogenerator boost biomimetic pressure sensor[J]. Advanced Energy Materials, 2018. DOI: 10.1002/aenm.201702671.
[11] WANG Y, CHAO M, WAN P, et al. A wearable breathable pressure sensor from metal-organic framework derived nanocomposites for highly sensitive broad-range healthcare monitoring[J]. Nano Energy, 2020. DOI: 10.1016/j.nanoen.2020.104560.
[12] 林崇德, 姜璐, 王德胜. 中国成人教育百科全书[M]. 海口: 南海出版公司, 1994: 164-165.
LIN Chongde, JIANG Lu, WANG Desheng. Encyclopedia of adult education in China[M]. Haikou: Nanhai Publishing Company, 1994: 164-165.
[13] 王瑞荣. 基于石墨烯/PDMS介质层的柔性压力传感器[J]. 电子元件与材料, 2019, 38(8): 72-75.
WANG Ruirong. Flexible pressure sensor based on graphene/PDMS dielectric layer[J]. Electronic Components and Materials, 2019, 38(8): 72-75.
[14] 张高晶, 王冰心, 刘迎春, 等. 三维织物基石墨烯柔性压力传感器设计及应用[J]. 针织工业, 2021(4): 49-54.
ZHANG Gaojing, WANG Bingxin, LIU Yingchun, et al. Design and application of a flexible pressure sensor for 3d fabric cornerstone graphene[J]. Knitting Industries, 2021(4): 49-54.
[1] 谷金峻, 魏春艳, 郭紫阳, 吕丽华, 白晋, 赵航慧妍. 棉秆皮微晶纤维素/改性氧化石墨烯阻燃纤维的制备及其性能[J]. 纺织学报, 2024, 45(01): 39-47.
[2] 管图祥, 吴健, 暴宁钟. 微流控纺丝制备石墨烯纤维基柔性超级电容器的研究进展[J]. 纺织学报, 2023, 44(12): 205-215.
[3] 李璟孜, 娄蒙蒙, 黄世燕, 李方. 基于光热利用的金属有机骨架/石墨烯复合膜对印染废水的再生处理[J]. 纺织学报, 2023, 44(09): 116-123.
[4] 徐瑞东, 王航, 曲丽君, 田明伟. 聚乳酸非织造基材触摸传感电子织物制备及其性能[J]. 纺织学报, 2023, 44(09): 161-167.
[5] 何铠君, 沈加加, 刘国金. 石墨烯改性蚕丝的制备方法及其应用研究进展[J]. 纺织学报, 2023, 44(09): 223-231.
[6] 辛华, 李阳帆, 罗浩. 复合改性氧化石墨烯接枝水性聚氨酯的制备及其性能[J]. 纺织学报, 2023, 44(08): 133-142.
[7] 李露红, 赵博宇, 丛洪莲. 复合结构经编针织电容式传感器设计及其性能[J]. 纺织学报, 2023, 44(08): 88-95.
[8] 李阳, 封严. 石墨烯基新型抗菌材料的研究进展[J]. 纺织学报, 2023, 44(04): 230-237.
[9] 孙将皓, 邵彦峥, 魏春艳, 王迎. 海藻酸钠/改性氧化石墨烯微孔气凝胶纤维制备与吸附性能[J]. 纺织学报, 2023, 44(04): 24-31.
[10] 李港华, 王航, 史宝会, 曲丽君, 田明伟. 柔性电子织物的构筑及其压力传感性能[J]. 纺织学报, 2023, 44(02): 96-102.
[11] 万爱兰, 沈新燕, 王晓晓, 赵树强. 聚多巴胺修饰还原氧化石墨烯/聚吡咯导电织物的制备及其传感响应特性[J]. 纺织学报, 2023, 44(01): 156-163.
[12] 陈琛, 韩燚, 孙海燕, 姚诚凯, 高超. 花状氧化石墨烯原位展开共聚聚酰胺6及其功能纤维[J]. 纺织学报, 2023, 44(01): 47-55.
[13] 代璐, 胡泽旭, 王研, 周哲, 张帆, 朱美芳. 聚苯硫醚/石墨烯纳米复合纤维的燃烧和炭化行为[J]. 纺织学报, 2023, 44(01): 71-78.
[14] 楚艳艳, 李施辰, 陈超, 刘莹莹, 黄伟韩, 张越, 陈晓钢. 柔性抗冲击纺织材料及其结构的研究进展[J]. 纺织学报, 2022, 43(12): 203-212.
[15] 王双双, 季志浩, 盛国栋, 金恩琪. 零价铁/氧化石墨烯复合吸附剂对染料和重金属的吸附性能[J]. 纺织学报, 2022, 43(09): 156-166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!