纺织学报 ›› 2024, Vol. 45 ›› Issue (11): 185-192.doi: 10.13475/j.fzxb.20240201801

• 服装工程 • 上一篇    下一篇

基于围合袖窿结构模型的袖山结构设计方法

张恒()   

  1. 长春工程学院, 吉林 长春 130021
  • 收稿日期:2024-02-20 修回日期:2024-07-22 出版日期:2024-11-15 发布日期:2024-12-30
  • 作者简介:张恒(1975—),男,副教授,硕士。主要研究方向为服装结构设计、服装虚拟仿真技术应用、服装艺术理论等。E-mail:635289555@qq.com

Design method of sleeve cap structure based on enclosing armhole structure model

ZHANG Heng()   

  1. Changchun Institute of Technology, Changchun, Jilin 130021, China
  • Received:2024-02-20 Revised:2024-07-22 Published:2024-11-15 Online:2024-12-30

摘要:

为解决袖山弧长与袖窿弧长的精准匹配问题,提出一种基于衣身袖窿围合结构模型的袖山结构设计方法。通过构建围合状态衣身袖窿结构模型,推导出依据平面状态袖窿数据求得围合状态袖窿深的计算公式,利用三角函数公式及袖夹角与袖山高的变量关系,确定了袖山高的计算方法;通过基于5个实验号型的20组袖山结构设计验证实验确定了袖山结构设计中关键结构转折点,完成了基于衣身袖窿结构模型的袖山结构设计模型构建。运用SPSS软件对实验数据进行了回归分析。实验结果表明:基于衣身袖窿结构模型的袖山结构设计方法可以提升袖山弧长与袖窿弧长的精准匹配,依据平面状态袖窿数据求得围合状态袖窿深的计算公式和袖山高的计算方法可以实现袖山结构设计所需基础数据的准确计算。

关键词: 袖窿结构, 袖山结构, 围合状态, 衣袖夹角, 精准匹配

Abstract:

Objective Precise matching of sleeve cap and armhole is the core technical issue in designing sleeve cap structure. In order to accurately match the sleeve cap and armhole, a design method for the sleeve cap structure based on the armhole closure structure model is proposed to address the issue of a lack of relevant design theory for sleeve cap structure design.

Method By creating a model of the armhole structure in the enclosed state of clothing, a formula for calculating the armhole depth in the enclosed state was derived based on the flat state armhole data. Using the trigonometric function formula and the variable relationship between the sleeve angle and the armhole height, the calculation method of the sleeve cap height was determined. The key structural turning points in the design of sleeve cap structure were determined through three groups of nine experiments with different sleeve pinch angles and sleeve hole depth states. Experimental data were analyzed by regression using SPSS software.

Results From the analysis of the virtual simulation structure model of the armhole, it was found that the sleeve angle and the armhole height are closely related. The variable relationship between the sleeve angle and the height of the sleeve cap can be accurately calculated by using the trigonometric formula. The armhole depth in the enclosed state has more practical significance for setting the sleeve height, and the data is more accurate. Based on the planar armhole data, virtual simulation experiments can verify that this method of using the semi-elliptic perimeter formula to calculate the depth calculation formula of the encirclement armhole is feasible. Therefore, the planar armhole data can be used as the basic data for building the sleeve cap structure model. The sleeve cap height can be accurately calculated by taking the armhole depth data in the enclosed state and the preset sleeve angle. From the analysis of the correlation between the armhole and the sleeve cap planar structure model, the accurate setting of points E and F in the structure based on the arc of the armhole becomes the key to achieve the accurate matching of the sleeve cap and the armhole. The experimental design of the fitted sleeve cap structure model was completed based on the basic type of garment body structure model, the focus of the experiment was to complete the initial determination of the key structural turning points in the design of the sleeve cap structure. From the comparative analysis of the experimental data of the sleeve cap arc length and the armhole arc length, the intersection point obtained by taking GB3/5 as the horizontal line intersecting the front and back armhole arcs can be used as the key structural turning point.Through the experiment on designing the sleeve cap structure based on different morphological armhole structure models and the comparison of sleeve cap arc length and armhole arc length data for three groups of nine different sleeve angle and armhole depth states, the SPSS software was utilized to complete the t-test for paired samples of anterior sleeve cap arc length and anterior armhole arc length, and the t-test for paired samples of posterior sleeve cap arc length and posterior armhole arc length, it is proved that the intersection point obtained by taking GB3/5 on the horizontal line intersecting the front and back armhole arcs can be used as the key structural turning point to complete the design of the sleeve cap structure based on the armhole.

Conclusion The results of the study indicate that the sleeve angle, sleeve cap height and the overall structure of the sleeve cap are closely related. Verified through structural design practice, the design method of sleeve cap structure based on the enclosed structure model can improve the precise matching between the sleeve cap and armhole,which has theoretical guidance and practical application value in practical work.

Key words: armhole structure, sleeve cap structure, enclosed condition, sleeve angle, precise matching

中图分类号: 

  • TS941.17

图1

衣身袖窿与衣袖袖山结构关系"

图2

不同袖夹角状态下衣袖形态造型"

图3

基本型女装衣身和衣袖结构纸样与虚拟仿真结构模型"

图4

衣身袖窿和衣袖袖山局部结构模型"

图5

袖窿结构模型与袖山结构模型比对分析"

图6

围合状态衣身袖窿结构模型"

表1

基于平面袖窿计算数据与虚拟仿真实验量取数据的袖窿深比对分析"

实验
号型
袖窿深数据/cm 差值/
cm
基于平面袖窿计算数据 虚拟仿真实验量取数据
150/76A 15.43 15.34 +0.09
155/80A 15.56 15.50 +0.06
160/84A 15.68 15.61 +0.07
165/88A 15.78 15.82 -0.04
170/92A 15.97 15.96 +0.01

图7

袖窿与袖山平面结构模型关联性解析"

图8

基本型衣身结构模型的实验准备"

图9

袖窿底部弧线与袖山底部弧线吻合范围设定"

图10

基于衣身袖窿结构模型的袖山结构模型构建实验"

表2

袖山弧长与袖窿弧长实验数据比较分析"

实验
项序
GB
分线
位置
后袖山
弧长/
cm
后袖窿
弧长/
cm
差值/
cm
前袖山
弧长/
cm
前袖窿
弧长/
cm
差值/
cm
1 G1 22.07 21.78 +0.29 21.07 20.86 +0.21
2 G2 22.05 21.78 +0.27 21.03 20.86 +0.17
3 G3 21.81 21.78 +0.03 20.78 20.86 -0.08
4 G4 21.31 21.78 -0.47 20.20 20.86 -0.66

图11

基于不同实验号型的袖山结构设计验证实验数据 注:单位为cm。"

表3

袖山弧长与袖窿弧长数据比较"

实验
号型
GB
分线
位置
后袖山
弧长/
cm
后袖
窿弧长/
cm
后袖
差值/
cm
前袖
山弧长/
cm
前袖
窿弧长/
cm
前袖
差值/
cm
150/76A G1 20.95 20.66 +0.29 19.71 19.40 +0.31
G2 20.98 20.66 +0.32 19.71 19.40 +0.31
G3 20.80 20.66 +0.14 19.50 19.40 +0.10
G4 20.39 20.66 -0.27 19.05 19.40 -0.35
155/80A G1 21.53 21.22 +0.31 20.35 20.06 +0.29
G2 21.53 21.22 +0.31 20.30 20.06 +0.24
G3 21.32 21.22 +0.10 20.06 20.06 +0.00
G4 20.86 21.22 -0.36 19.55 20.06 -0.51
160/84A G1 22.07 21.78 +0.29 21.07 20.86 +0.21
G2 22.05 21.78 +0.27 21.03 20.86 +0.17
G3 21.81 21.78 +0.03 20.78 20.86 -0.08
G4 21.31 21.78 -0.47 20.20 20.86 -0.66
165/88A G1 22.59 22.33 +0.26 21.79 21.56 +0.23
G2 22.55 22.33 +0.22 21.73 21.56 +0.17
G3 22.26 22.33 -0.07 21.41 21.56 -0.15
G4 21.70 22.33 -0.63 20.74 21.56 -0.82
170/92A G1 23.07 22.84 +0.23 22.44 22.23 +0.21
G2 23.02 22.84 +0.18 22.40 22.23 +0.17
G3 22.71 22.84 -0.13 22.07 22.23 -0.16
G4 22.15 22.84 -0.69 21.33 22.23 -0.90

表4

袖山弧长与袖窿弧长均值数据比较"

实验
号型
GB
分线
位置
后袖山
弧长均
值/cm
后袖窿
弧长均
值/cm
后袖
差值均
值/cm
前袖山
弧长均
值/cm
前袖窿
弧长均
值/cm
前袖
差值均
值/cm
5个
实验
号型
G1 22.04 21.77 +0.28 21.07 20.82 +0.25
G2 22.03 21.77 +0.26 21.03 20.82 +0.21
G3 21.78 21.77 +0.01 20.76 20.82 -0.06
G4 21.28 21.77 -0.48 20.17 20.82 -0.65

图12

袖山结构设计比对实验验证"

[1] 谢勇. 影响新原型袖子结构的相关因素分析[J]. 纺织导报, 2019(1):89-92.
XIE Yong. Analysis of related factors influencing new prototype sleeve structure[J]. China Textile Leader, 2019 (1):89-92.
[2] 石春乐, 刘冠彬, 张文斌. 袖山高与衣袖造型的配伍关系研究[J]. 西安工程科技学院学报, 2006(6): 284-287.
SHI Chunle, LIU Guanbin, ZHANG Wenbin. The theoretic research and practice on using angle in sleeve structure design[J]. Journal of Xi'an University of Engineering Science and Technology, 2006(6): 284-287.
[3] 刘瑞璞. 服装纸样设计原理与应用(女装篇)[M]. 北京: 中国纺织出版社, 2008(9):366.
LIU Ruipu. The principles and practices of pattern design[M]. Beijing: China Textile & Apparel Press, 2008 (9): 366.
[4] 刘凤霞, 韩滨颖. 现代男装纸样设计原理与打板[M]. 北京: 中国纺织出版社, 2014(3):161-219.
LIU Fengxia, HAN Binying. Modern men's pattern design principle and pattern making[M]. Beijing: China Textile & Apparel Press, 2014 (3): 161-219.
[5] 刘东. 衣袖结构与袖窿的配合因素分析[J]. 纺织导报, 2010(2):80-82.
LIU Dong. Coordination analysis between sleeves and armholes[J]. China Textile Leader, 2010(2):80-82.
[6] 王竹君, 李婷玉, 邢英梅, 等. 基于曲线拟合文化式原型袖窿和袖山结构研究[J]. 西安工程大学学报, 2014(12):704-708.
WANG Zhujun, LI Tingyu, XING Yingmei et al. Research on armhole and sleeve cap struture of culture prototupe based on curve fitting[J]. Journal of Xi'an Polytechnic University, 2014(12):704-708.
[7] 张恒, 刘凤霞. 女装结构设计原理与应用[M]. 北京: 中国纺织出版社,2021:73-79.
ZHANG Heng, LIU Fengxia. Structural design of women's wear principle and application[M]. Beijing: China Textile & Apparel Press, 2021: 73-79.
[8] 胡冰冰. 基于三维虚拟试衣系统的女装两片袖袖窿与衣袖的结构关系研究[D]. 武汉: 武汉纺织大学,2018:46-55.
HU Bingbing. Research on the relationship between the two-piece cuff sleeve and the sleeves of women's wear based on the three-dimensional virtual fitting system[D]. Wuhan: Wuhan Textile University, 2018:46-55.
[9] 张文斌. 服装结构设计[M]. 北京: 中国纺织出版社,2006:210-214.
ZHANG Wenbin. Pattern making for fashion design[M]. Beijing: China Textile & Apparel Press, 2006: 210-214.
[10] 中屋典子, 三吉满智子. 服装造型学[M]. 北京: 中国纺织出版社,2004:33.
NAKAYA Noriko, MIYOSHI Machiko. Fashion modeling[M]. Beijing: China Textile & Apparel Press,2004: 33.
[1] 李杨, 申鸿, 吴晶. 女装肩部结构变化与袖窿夹角的相关性[J]. 纺织学报, 2019, 40(11): 151-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!