纺织学报 ›› 2025, Vol. 46 ›› Issue (01): 80-86.doi: 10.13475/j.fzxb.20240103701

• 纺织工程 • 上一篇    下一篇

增强体结构对三维角联锁复合材料抗冲击性能的影响

郭艳文1, 黄晓梅1,2, 曹海建1,2()   

  1. 1.南通大学 纺织服装学院, 江苏 南通 226019
    2.南通大学 安全防护用特种纤维复合材料研发国家联合工程研究中心, 江苏 南通 226019
  • 收稿日期:2024-01-09 修回日期:2024-09-30 出版日期:2025-01-15 发布日期:2025-01-15
  • 通讯作者: 曹海建(1979—),男,教授,博士。主要研究方向为纺织结构复合材料的开发与应用。E-mail:caohaijian@ntu.edu.cn
  • 作者简介:郭艳文(2000—),女,硕士生。主要研究方向为纺织结构复合材料。
  • 基金资助:
    国家重点研发计划项目(2018YFC0810300);江苏省产学研合作项目(BY20230371);江苏省研究生科研与实践创新计划项目(KYCX23_3406)

Influence of reinforcement structure on impact resistance of three-dimensional angle interlock composites

GUO Yanwen1, HUANG Xiaomei1,2, CAO Haijian1,2()   

  1. 1. School of Textile and Clothing, Nantong University, Nantong, Jiangsu 226019, China
    2. National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong, Jiangsu 226019, China
  • Received:2024-01-09 Revised:2024-09-30 Published:2025-01-15 Online:2025-01-15

摘要: 为揭示增强体结构参数对三维角联锁复合材料抗冲击性能的影响规律,利用三维织机和真空辅助树脂传递模塑(VARTM)工艺制备了三维角联锁复合材料。研究了2种不同紧度(37%和46%)和3种纬密(30、33和36根/cm)的芳纶三维角联锁复合材料的低速冲击性能,分析了三维角联锁复合材料在不同冲击能量下的损伤形貌和特征。结果表明:织物紧度和纬密对材料的抗冲击性能影响显著,较大紧度的织物表现出更好的抗冲击性能;随着纬密的增加,复合材料的抗冲击性能提高;在较低冲击能量下,三维角联锁复合材料的承载主体是基体,在较高冲击能量下的承载主体是增强体。

关键词: 三维角联锁复合材料, 增强体, 芳纶, 紧度, 纬密, 铺层角度, 抗冲击性能

Abstract:

Objective In order to reveal the influence of reinforcement parameters on the impact properties of three-dimensional angle interlock composites, angle interlock composites were designed and prepared with two levels of reinforcement tightness and three levels of weft density, and the influences of fabric structure parameters and layering methods on low-velocity impact properties of the composites are investigated.

Method Three-dimensional angle interlock fabric reinforcements were prepared using a three-dimensional loom and composites were prepared using vacuum assisted resin transfer molding process (VARTM). The low-velocity impact test was carried out by using the double-guide drop hammer impact tester. After the low-velocity impact test, the crack area of the matrix on the back of the samples was measured, the depth of the pit on the front of the sample was measured by a digital depth meter, and the damage morphology of the impact surface of the material was photographed by a camera.

Results When fabric tightness decreases from 46% to 37%, fiber binding to the matrix weakens. Under impact, the matrix deforms more, increasing the likelihood of shear failure between resin-rich weft points and adjacent buckling warp edges. This lowers the material's mean-failure energy. Cracking behavior in material matrices varies with impact energy and tightness. Under low impact, tighter materials form micro-cracks, reducing cracking area but facilitating crack growth with increasing energy. Looser materials show limited micro-crack expansion and only crack at higher impact due to their structure. Under high impact, tighter materials have deeper pit fronts but smaller cracking areas, with aramid fibers absorbing energy through deformation. Stronger matrix-fiber binding leads to greater deformation, deeper pits, and enhanced impact absorption. Raising weft density from 30 to 36 picks/cm boosts mean-failure energy from 20.2 J to 27.1 J. Higher weft density increases fiber volume in plastic deformation, potentially enhancing matrix brittleness due to compressive stress, but overall improves the material's energy absorption. As weft density increases, the cracking area of the matrix exhibits a first increasing then decreasing trend at lower impact energy. Initially, an increase in weft density from 30 to 33 picks/cm, enhances warp bending wave height at warp-weft overlaps, leading to a more pronounced stress concentration and increased matrix cracking under impact loads. However, as weft density rises to 36 picks/cm, yarns squeeze each other during weaving, reducing fiber gaps and altering warp turning angles due to yarn deformation, which stabilizes the cracking area. Additionally, the arc shape of warp and weft yarns dissipates impact load, further reducing cracking likelihood. At higher impact energy, matrix cracking decreases with increasing weft density, as aramid fibers absorb energy through plastic deformation, and a higher fiber volume content per unit area due to increased weft density further decreases cracking.

Conclusion Fabric tightness and weft density have significant influences on the impact resistance of the material, and the fabric with greater tightness shows better impact resistance. When the total tightness of the fabric increases from 37% to 46%, the mean-failure energy per unit weight of the composite increases from 5.48 J/kg to 8.08 J/kg, implying a weight reduction by about 1/3. With the increase of weft density, the impact resistance of the composite is improved. When the weft density increases from 30 to 36 picks/cm, the mean-failure energy of the material increases from 20.2 J to 27.1 J. In addition, the same direction laminated composite has better impact resistance. Under lower impact energy, the bearing body of the angle interlock composite is the matrix, and under higher impact energy, the bearing body is the reinforcement.

Key words: three-dimensional angle interlock composite, reinforcement, aramid fiber, tightness, weft density, lay-up angle, impact resistance

中图分类号: 

  • TB332

图1

不同层数的织物组织图"

表1

织造参数设计"

层数 筘入数/
(根·筘-1)
设计
宽度/cm
筘号 穿筘数 穿综
方式
总经
根数
6 5 100 23 900 顺穿法 4 500
4 3 100 25 1 000 顺穿法 3 000

表2

织物规格参数"

层数 经密/
(根·cm-1)
纬密/
(根·cm-1)
总紧度/
%
厚度/
mm
6 45 24 37 1.15
4 30 30 46 1.06
4 30 33 49 1.14
4 30 36 51 1.26

图2

不同紧度的织物实物图"

图3

不同纬密的织物经向剖面图"

表3

复合材料结构参数"

试样
编号
厚度/
mm
含胶量/
%
面密度/
(kg·m-2)
铺层
方式
总紧度/
%
经密×纬密/
(根·cm-1)
1# 2.76 47.7 3.10 [0/0] 37 45×24
2# 2.11 41.6 2.50 [0/0] 46 30×30
3# 2.24 41.4 2.63 [0/0] 49 30×33
4# 2.37 37.3 2.71 [0/0] 51 30×36
5# 4.14 37.4 5.17 [0/0]s 49 30×33
6# 4.20 42.2 5.20 [45/0]s 49 30×33
7# 4.19 41.5 5.17 [90/0]s 49 30×33

图4

织物铺层角度示意图"

图5

不同冲击能量下材料表面的损伤形貌"

图6

不同冲击能量下材料的损伤特征"

表4

落锤冲击条件下试样的中值破坏能量值和初始能量值"

试样编号 E1 /J E2/J 标准差
1# 17.0 0.05
2# 20.2 0.08
3# 22.4 0.11
4# 27.1 0.11
5# 21.8 0.19
6# 21.2 0.33
7# 20.7 0.19

表5

不同紧度材料的单位质量中值破坏能量"

试样编号 E3/(J·kg-1) 标准差
1# 5.48 0.015
2# 8.08 0.032

图7

不同冲击能量下不同紧度材料的基体开裂面积"

图8

不同冲击能量下不同紧度材料的凹坑深度"

图9

不同冲击能量下不同纬密材料的基体开裂面积"

图10

材料背面基体裂纹和基体开裂形貌图"

表6

不同铺层角度下材料的基体开裂面积"

试样编号 基体开裂面积/mm2 标准差
5# 45.8 0.85
6# 55.8 0.45
7# 60.7 0.41
[1] 高锡凤. 警用盾牌[J]. 现代世界警察, 2021(7): 36-43; 2021(8): 36-45.
GAO Xifeng. Police shield[J]. Modern World Police, 2021(7): 36-43; 2021(8): 36-45.
[2] 杨杰, 文弋, 邱日祥. 聚碳酸酯冲击力学响应规律及防暴性能研究[J]. 兵器材料科学与工程, 2014, 37(5): 88-91.
YANG Jie, WEN Yi, QIU Rixiang. Impact mechanical response and anti-viloence property of poly-carbonate[J]. Ordnance Material Science and Engineering, 2014, 37(5): 88-91.
[3] 陈利, 赵世博, 王心淼. 三维纺织增强材料及其在航空航天领域的应用[J]. 纺织导报, 2018(S1): 80-87.
CHEN Li, ZHAO Shibo, WANG Xinmiao. Development and application of 3D textile Reinforcements in the aerospace field[J]. China Textile Leader, 2018(S1): 80-87.
[4] 曹海建, 钱坤, 魏取福, 等. 三维整体中空复合材料低速冲击性能[J]. 纺织学报, 2009, 30(10): 70-74.
CAO Haijian, QIAN Kun, WEI Qufu, et al. Low-velocity impact property of 3-D integrated hollow sandwich composites[J]. Journal of Textile Research, 2009, 30(10): 70-74.
[5] LIU Y, XIA H, NI Q Q. Experimental investigation on low-velocity impact performance of 3D woven textile composites[J]. Applied Composite Materials, 2022, 29(1): 121-146.
[6] CAO W, ZHANG J, SUN B, et al. X-ray tomography and numerical study on low-velocity impact damages of three-dimensional angle-interlock woven composites[J]. Composite Structures, 2019. DOI: 10.1016/j.compstruct.2019.111525.
[7] BANDARU A K, CHAVAN V V, AHMAD S, et al. Low velocity impact response of 2D and 3D Kevlar/polypropylene composites[J]. International Journal of Impact Engineering, 2016, 93(6): 136-143.
[8] DASH B P, BEHERA B K. A study on structure property relationship of 3D woven composites[J]. Materials Today: Proceedings, 2015, 2(4/5): 2991-3007.
[9] CHEN F, HODGKINSON J M. Impact behaviour of composites with different fibre architecture[J]. Journal of Aerospace Engineering, 2009, 223(7): 1009-1017.
[10] 杨秋红, 王瑞, 徐磊. 织物结构对2.5维织物复合材料冲击动态力学性能的影响[J]. 复合材料科学与工程, 2010(3): 44-47.
YANG Qiuhong, WANG Rui, XU Lei. Effect of fabric structure on the impact dynamic mechanical properties of 2.5D woven fabric composites[J]. Composites Science and Engineering, 2010(3): 44-47.
[11] 罗超, 曹海建, 黄晓梅. 不同芯材高度三维夹芯复合材料抗低速冲击响应的数值模拟[J]. 纺织学报, 2019, 37(8): 48-54.
LUO Chao, CAO Haijian, HUANG Xiaomei. Numerical simulation on low velocity impact response of three-dimensional sandwich composites with different core height[J]. Journal of Textile Research, 2019, 37(8): 48-54.
[12] TAMAKUWALA V R. Manufacturing of fiber reinforced polymer by using VARTM process: a review[J]. Materials Today: Proceedings, 2020, 44(5): 987-993.
[13] 铁瑛, 李成. 复合材料结构冲击分析与测试[M]. 郑州: 黄河水利出版社,2018: 64-65.
TIE Ying, LI Cheng. Impact analysis and testing of composite material structures[M]. Zhengzhou: The Yellow River Water Conservancy Press,2018:64-65.
[14] LIU D, MALVERN L E. Matrix cracking in impacted glass/epoxy plates[J]. Journal of Composite Materials, 1987, 21:594-609.
[15] 魏伯荣, 蒋海滨, 李名琦. 锥体冲击芳纶复合材料的损伤及其机理研究[J]. 航空材料学报, 2001(1): 47-50.
WEI Borong, JIANG Haibin, LI Mingqi. Study of circular impact damage to Kevlar composites and mechanism[J]. Journal of Aeronautical Materials, 2001(1): 47-50.
[16] 宋焕成, 徐波. 玻璃纤维、Kevlar-49纤维复合材料及其夹芯混杂梁的弯曲/冲击性能研究[J]. 复合材料学报, 1989, 6(1): 1-6,95.
SONG Huancheng, XU Bo. Flexural/impact properties of glass fiber, Kevlar-49 fiber composites and their sandwich hybrid beams[J]. Acta Materiae Compositae Sinica, 1989, 6(1): 1-6,95.
[17] MAHADIK Y, HALLETT S R. Effect of fabric compaction and yarn waviness on 3D woven composite compressive properties[J]. Composites Part A: Applied Science & Manufacturing, 2011, 42(11): 1592-1600.
[18] ARIKAN V. The influence of yarn fiber volume fraction, shear angle, and yarn spacing on crack propagation resistance of plain-woven fabric-reinforced epoxy composites[J]. Polymer Composites, 2023, 44(9): 5608-5618.
[19] MAHADIK Y, BROWN K A R, HALLETT S R. Characterisation of 3D woven composite internal architecture and effect of compaction[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(7): 872-880.
[1] 贾笑娅, 王蕊宁, 侯宵, 何彩婷, 刘杰, 孙润军, 王秋实. 多相剪切增稠液增强柔性层合结构防刺材料的制备及其性能[J]. 纺织学报, 2024, 45(10): 113-121.
[2] 贾笑娅, 王蕊宁, 孙润军. SiO2/聚乙二醇200/碳纳米管剪切增稠液浸渍芳纶织物及其复合材料防刺性能[J]. 纺织学报, 2024, 45(04): 151-159.
[3] 马莹, 陈奡, 胡月鹏, 潘俊, 胡瀚杰, 禄盛. 芳纶平纹织物单纱抽拔力学性能分析[J]. 纺织学报, 2024, 45(03): 58-64.
[4] 方春月, 刘紫璇, 贾立霞, 阎若思. 双等离子体改性超高分子量聚乙烯复合材料的弹道响应[J]. 纺织学报, 2024, 45(02): 77-84.
[5] 吕钧炜, 罗龙波, 刘向阳. 基于直接氟化技术的芳纶表/界面结构设计与制备研究进展[J]. 纺织学报, 2023, 44(06): 21-27.
[6] 关振虹, 李丹, 宋金苓, 冷向阳, 宋西全. 易染间位芳纶的制备及其性能[J]. 纺织学报, 2023, 44(06): 28-32.
[7] 夏良君, 曹根阳, 刘欣, 徐卫林. 高性能纤维及其制品颜色构建的研究进展[J]. 纺织学报, 2023, 44(06): 1-9.
[8] 吕婧, 刘增伟, 程青青, 张学同. 芳纶纳米纤维气凝胶的研究进展[J]. 纺织学报, 2023, 44(06): 10-20.
[9] 韦玉辉, 郑晨, 程尔骕, 赵书涵, 苏兆伟. 光催化自清洁芳纶织物的制备及其性能[J]. 纺织学报, 2023, 44(05): 171-176.
[10] 吴俊雄, 尉霞, 罗璟娴, 闫姣儒, 吴磊. 阻燃腈纶/芳纶包芯纱的制备及其紫外光稳定性[J]. 纺织学报, 2023, 44(03): 60-66.
[11] 郭亚飞, 梁高勇, 王美慧, 郝新敏. 臭氧等离子体预处理对芳纶染色性能的影响[J]. 纺织学报, 2022, 43(10): 83-88.
[12] 陈珺娴, 李伟萍, 付琪轩, 冯新星, 张华. 芳纶/阻燃粘胶/阻燃锦纶混纺织物制备及其性能[J]. 纺织学报, 2022, 43(09): 107-114.
[13] 马莹, 刘岳岩, 赵洋, 陈翔, 禄盛, 胡瀚杰. 基于芳纶平纹织物微观几何结构的纱线抽拔力学性能分析[J]. 纺织学报, 2022, 43(04): 47-54.
[14] 陈纤, 李猛猛, 赵昕, 董杰, 滕翠青. 纳米芳纶气凝胶纤维的制备与微观结构调控[J]. 纺织学报, 2021, 42(11): 17-23.
[15] 牟浩蕾, 解江, 裴惠, 冯振宇, 耿宏章. 芳纶织物及其包容环的弹道冲击与数值模拟[J]. 纺织学报, 2021, 42(11): 56-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!