纺织学报 ›› 2025, Vol. 46 ›› Issue (03): 225-235.doi: 10.13475/j.fzxb.20240306702
• 综合述评 • 上一篇
LUO Xin, WANG Lei, WANG Xiaoyou, WU Tao, ZHANG Zhenzhen, ZHANG Yifan(
)
摘要:
丝素蛋白是构成蚕丝的主要成分之一,具有独特的多级结构和自组装特性,赋予蚕丝优异的力学性能。综述了目前提出的蚕丝纤维结构模型,总结了丝素蛋白的排列方式和自组装机制,探讨了丝素蛋白结构对其宏观性能的影响方式,为探索丝素蛋白材料功能化和性能提升的新途径提供参考。详述了由五级结构模型启发的多级结构分级调控机制,总结了各层级结构对蚕丝基材料力学性能的影响。基于结构调控的丝素蛋白基功能材料在生物医药、储能、环境科学等领域的应用实现了突破,针对丝素蛋白材料缺乏大规模生产和应用的问题,提出其在新兴学科领域的发展潜力和可能面临的挑战,为天然蛋白质材料的多元化和产业化应用提供新思路。
中图分类号:
| [1] | QIU W, LIU X Y. Recent progress of applying mesoscopic functionalization engineering principles to spin advanced regenerated silk fibroin fibers[J]. Advanced Fiber Materials, 2022, 4(3): 390-403. |
| [2] | SHI C, HU F, WU R, et al. New silk road: from mesoscopic reconstruction/functionalization to flexible meso-electronics/photonics based on cocoon silk materials[J]. Advanced Materials, 2021.DOI:10.1002/adma.202005910. |
| [3] | WU R, MA L, LIU X Y. From mesoscopic functionalization of silk fibroin to smart fiber devices for textile electronics and photonics[J]. Advanced Science, 2022.DOI:10.1002/advs.202103981. |
| [4] | QIU W, PATIL A, HU F, et al. Hierarchical structure of silk materials versus mechanical performance and mesoscopic engineering principles[J]. Small, 2019.DOI:10.1002/smll.201903948. |
| [5] | NGUYEN T P, NGUYEN Q V, NGUYEN V H, et al. Silk fibroin-based biomaterials for biomedical applications: a review[J]. Polymers, 2019, 11(12): 1-25. |
| [6] | YOSHIOKA T, HATA T, KOJIMA K, et al. Fabrication scheme for obtaining transparent, flexible, and water-insoluble silk films from apparently dissolved silk-gland fibroin of Bombyx mori silkworm[J]. ACS Biomaterials Science & Engineering, 2017, 3(12): 3207-3214. |
| [7] | WOLF H W, HOUGEN O A. Silk degumming: II: the rate of degumming Silk[J]. Textile Research Journal, 1935, 5(3): 134-148. |
| [8] |
ROCKWOOD D N, PREDA R C, YÜCEL T, et al. Materials fabrication from Bombyx mori silk fibroin[J]. Nature Protocols, 2011, 6(10): 1612-1631.
doi: 10.1038/nprot.2011.379 pmid: 21959241 |
| [9] | KRASNOV I, DIDDENS I, HAUPTMANN N, et al. Mechanical properties of silk: interplay of deformation on macroscopic and molecular length scales[J]. Physical Review Letters, 2008.DOI:10.1103/PhysRevLett.100.048104. |
| [10] | PUTTHANARAT S, STRIBECK N, FOSSEY S A, et al. Investigation of the nanofibrils of silk fibers[J]. Polymer, 2000, 41(21): 7735-7747. |
| [11] | XU G, GONG L, YANG Z, et al. What makes spider silk fibers so strong? from molecular-crystallite network to hierarchical network structures[J]. Soft Matter, 2014, 10(14): 2116-2125. |
| [12] | HAGN F, EISOLDT L, HARDY J G, et al. A conserved spider silk domain acts as a molecular switch that controls fibre assembly[J]. Nature, 2010, 465(7295): 239-242. |
| [13] |
KNOWLES T P, FITZPATRICK A W, MEEHAN S, et al. Role of intermolecular forces in defining material properties of protein nanofibrils[J]. Science, 2007, 318(5858): 1900-1903.
pmid: 18096801 |
| [14] |
SIMMONS A H, MICHAL C A, JELINSKI L W. Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk[J]. Science, 1996, 271(5245): 84-87.
pmid: 8539605 |
| [15] | PORTER D, VOLLRATH F. Silk as a biomimetic ideal for structural polymers[J]. Advanced Materials, 2009, 21(4): 487-492. |
| [16] |
VOLLRATH F, PORTER D. Spider silk as archetypal protein elastomer[J]. Soft Matter, 2006, 2(5): 377-385.
doi: 10.1039/b600098n pmid: 32680251 |
| [17] | TERMONIA Y. Molecular modeling of spider silk elasticity[J]. Macromolecules, 1994, 27(25): 7378-7381. |
| [18] | GOSLINE J M, DEMONT M E, DENNY M W. The structure and properties of spider silk[J]. Endeavour, 1986, 10(1): 37-43. |
| [19] | KARSAI Á, MÁRTONFALVI ZS, NAGY A, et al. Mechanical manipulation of Alzheimer's amyloid β1-42 fibrils[J]. Journal of Structural Biology, 2006, 155(2): 316-326. |
| [20] | BRATZEL G, BUEHLER M J. Sequence-structure correlations in silk: poly-ala repeat of N. clavipes MaSp1 is naturally optimized at a critical length scale[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 7: 30-40. |
| [21] | LIU R, DENG Q, YANG Z, et al. ″Nano-fishnet″ structure making silk fibers tougher[J]. Advanced Functional Materials, 2016, 26(30): 5534-5541. |
| [22] |
KIM Y, CHANG H, YOON T, et al. Nano-fishnet formation of silk controlled by Arginine density[J]. Acta Biomaterialia, 2021, 128: 201-208.
doi: 10.1016/j.actbio.2021.04.001 pmid: 33862282 |
| [23] | CHOI W, CHOI M, JUN T, et al. Templated assembly of silk fibroin for a bio-feedstock-derived heart valve leaflet[J]. Advanced Functional Materials, 2023.DOI:10.1002/adfm.202307106. |
| [24] | WANG H Y, ZHANG Y, ZHANG M, et al. Functional modification of silk fibroin from silkworms and its application to medical biomaterials: a review[J]. International Journal of Biological Macromolecules, 2024.DOI:10.1016/j.ijbiomac.2023.129099. |
| [25] |
SAHOO J K, HASTURK O, FALCUCCI T, et al. Silk chemistry and biomedical material designs[J]. Nature Reviews Chemistry, 2023, 7(5): 302-318.
doi: 10.1038/s41570-023-00486-x pmid: 37165164 |
| [26] | ZHENG K, CHEN Y, HUANG W, et al. Chemically functionalized silk for human bone marrow-derived mesenchymal stem cells proliferation and differenti-ation[J]. ACS Applied Materials & Interfaces, 2016, 8(23): 14406-14413. |
| [27] |
WANG X, NAKAMOTO T, DULIŃSKA-MOLAK I, et al. Regulating the stemness of mesenchymal stem cells by tuning micropattern features[J]. Journal of Materials Chemistry B, 2016, 4(1): 37-45.
doi: 10.1039/c5tb02215k pmid: 32262807 |
| [28] | YU R, YANG Y, HE J, et al. Novel supramolecular self-healing silk fibroin-based hydrogel via host-guest interaction as wound dressing to enhance wound healing[J]. Chemical Engineering Journal, 2021.DOI:10.1016/j.cej.2020.128278. |
| [29] | BITAR L, ISELLA B, BERTELLA F, et al. Sustainable Bombyx mori's silk fibroin for biomedical applications as a molecular biotechnology challenge: a review[J]. International Journal of Biological Macromolecules, 2024.DOI:10.1016/j.ijbiomac.2024.130374. |
| [30] |
LIU X, SUN Y, CHEN B, et al. Novel magnetic silk fibroin scaffolds with delayed degradation for potential long-distance vascular repair[J]. Bioactive Materials, 2022, 7: 126-143.
doi: 10.1016/j.bioactmat.2021.04.036 pmid: 34466722 |
| [31] | HAO L, LI J, WANG P, et al. Spatiotemporal magnetocaloric microenvironment for guiding the fate of biodegradable polymer implants[J]. Advanced Functional Materials, 2021.DOI:10.1002/adfm.202009661. |
| [32] | WANG Q, SCHNIEPP H C. Nanofibrils as building blocks of silk fibers: critical review of the experimental evidence[J]. JOM, 2019, 71(4): 1248-1263. |
| [33] |
LIN N, LIU X Y. Correlation between hierarchical structure of crystal networks and macroscopic performance of mesoscopic soft materials and engineering principles[J]. Chemical Society Reviews, 2015, 44(21): 7881-7915.
doi: 10.1039/c5cs00074b pmid: 26214062 |
| [34] | WANG Q, LING S, YAO Q, et al. Observations of 3 nm silk nanofibrils exfoliated from natural silkworm silk fibers[J]. ACS Materials Letters, 2020, 2(2): 153-160. |
| [35] | JIANG C, WU C, LI X, et al. All-electrospun flexible triboelectric nanogenerator based on metallic MXene nanosheets[J]. Nano Energy, 2019, 59: 268-276. |
| [36] | CHEN Z, ZHANG H, LIN Z, et al. Programing performance of silk fibroin materials by controlled nucleation[J]. Advanced Functional Materials, 2016, 26(48): 8978-8990. |
| [37] | QIU W, LIU X Y. Recent progress of applying mesoscopic functionalization engineering principles to spin advanced regenerated silk fibroin fibers[J]. Advanced Fiber Materials, 2022, 4(3): 390-403. |
| [38] | HA S W, GRACZ H S, TONELLI A E, et al. Structural study of irregular amino acid sequences in the heavy chain of Bombyx mori silk fibroin[J]. Biomacromolecules, 2005, 6(5): 2563-2569. |
| [39] | ZHOU C, CONFALONIERI F, JACQUET M, et al. Silk fibroin: Structural implications of a remarkable amino acid sequence[J]. Proteins: Structure, Function, and Bioinformatics, 2001, 44(2): 119-122. |
| [40] |
CHIARINI A. Silk fibroin/poly(carbonate)-urethane as a substrate for cell growth: in vitro interactions with human cells[J]. Biomaterials, 2003, 24(5): 789-799.
pmid: 12485797 |
| [41] | LI G, ZHOU P, SHAO Z, et al. The natural silk spinning process: a nucleation-dependent aggregation mechanism?[J]. European Journal of Biochemistry, 2001, 268(24): 6600-6606. |
| [42] |
LU Q, ZHU H, ZHANG C, et al. Silk self-assembly mechanisms and control from thermodynamics to kinetics[J]. Biomacromolecules, 2012, 13(3): 826-832.
doi: 10.1021/bm201731e pmid: 22320432 |
| [43] | JIN H J, KAPLAN D L. Mechanism of silk processing in insects and spiders[J]. Nature, 2003, 424(6952): 1057-1061. |
| [44] |
PARTLOW B P, BAGHERI M, HARDEN J L, et al. Tyrosine templating in the self-assembly and crystallization of silk fibroin[J]. Biomacromolecules, 2016, 17(11): 3570-3579.
pmid: 27736062 |
| [45] | INOUE S, TSUDA H, TANAKA T, et al. Nanostructure of natural fibrous protein: in vitro nanofabric formation of Samia cynthia ricini wild silk fibroin by self-assembling[J]. Nano Letters, 2003, 3(10): 1329-1332. |
| [46] | MING J, ZUO B. Silk I structure formation through silk fibroin self-assembly[J]. Journal of Applied Polymer Science, 2012, 125(3): 2148-2154. |
| [47] | KOH L D, CHENG Y, TENG C P, et al. Structures, mechanical properties and applications of silk fibroin materials[J]. Progress in Polymer Science, 2015, 46: 86-110. |
| [48] | KOONS G L, DIBA M, MIKOS A G. Materials design for bone-tissue engineering[J]. Nature Reviews Materials, 2020, 5(8): 584-603. |
| [49] |
FAROKHI M, MOTTAGHITALAB F, SAMANI S, et al. Silk fibroin/hydroxyapatite composites for bone tissue engineering[J]. Biotechnology Advances, 2018, 36(1): 68-91.
doi: S0734-9750(17)30121-0 pmid: 28993220 |
| [50] | SUN W, GREGORY D A, TOMEH M A, et al. Silk fibroin as a functional biomaterial for tissue engineering[J]. International Journal of Molecular Sciences, 2021.DOI:10.3390/ijms22031499. |
| [51] | PILUSO S, FLORES GOMEZ D, DOKTER I, et al. Rapid and cytocompatible cell-laden silk hydrogel formation via riboflavin-mediated crosslinking[J]. Journal of Materials Chemistry B, 2020, 8(41): 9566-9575. |
| [52] | WANG Q, RAN X, WANG J, et al. Elastic fiber-reinforced silk fibroin scaffold with a double-crosslinking network for human ear-shaped cartilage regeneration[J]. Advanced Fiber Materials, 2023, 5(3): 1008-1024. |
| [53] | ZHANG Y, PENG S, LI X, et al. Design and function of lignin/silk fibroin-based multilayer water purification membranes for dye adsorption[J]. International Journal of Biological Macromolecules, 2023.DOI:10.1016/j.ijbiomac.2023.126863. |
| [54] | DOU Z, LI B, WU L, et al. Probiotic-functionalized silk fibroin/sodium alginate scaffolds with endoplasmic reticulum stress-relieving properties for promoted scarless wound healing[J]. ACS Applied Materials & Interfaces, 2023, 15(5): 6297-6311. |
| [55] | ZHANG Z, JIN Y, YIN J, et al. Evaluation of bioink printability for bioprinting applications[J]. Applied Physics Reviews, 2018.DOI:10.1063/1.5053979. |
| [56] | CHEN X B, FAZEL ANVARI-YAZDI A, DUAN X, et al. Biomaterials/bioinks and extrusion bioprinting[J]. Bioactive Materials, 2023, 28: 511-536. |
| [57] | GU Y, FORGET A, SHASTRI V P. Biobridge: an outlook on translational bioinks for 3D bioprinting[J]. Advanced Science, 2022.DOI:10.1002/advs.202103469. |
| [58] | KIM E, SEOK J M, BAE S B, et al. Silk fibroin enhances cytocompatibilty and dimensional stability of alginate hydrogels for light-based three-dimensional bioprinting[J]. Biomacromolecules, 2021, 22(5): 1921-1931. |
| [59] | HONG H, SEO Y B, KIM D Y, et al. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering[J]. Biomaterials, 2020.DOI:10.1016/j.biomaterials.2019.119679. |
| [60] | CHOI K Y, AJITERU O, HONG H, et al. A digital light processing 3D-printed artificial skin model and full-thickness wound models using silk fibroin bioink[J]. Acta Biomaterialia, 2023, 164: 159-174. |
| [61] | 高保东, 张岩, 唐文超, 等. 丝素基伤口敷料研究进展[J]. 纺织学报, 2016, 37(7): 162-168. |
| GAO Baodong, ZHANG Yan, TANG Wenchao, et al. Research progress of wound dressing based on silk fibroin[J]. Journal of Textile Research, 2016, 37(7): 162-168. | |
| [62] |
QIAO Z, LV X, HE S, et al. A mussel-inspired supramolecular hydrogel with robust tissue anchor for rapid hemostasis of arterial and visceral bleedings[J]. Bioactive Materials, 2021, 6(9): 2829-2840.
doi: 10.1016/j.bioactmat.2021.01.039 pmid: 33718665 |
| [63] | LI J, LI Y, GUO C, et al. Development of quercetin loaded silk fibroin/soybean protein isolate hydrogels for burn wound healing[J]. Chemical Engineering Journal, 2023.DOI:10.1016/j.cej.2023.148458. |
| [64] |
BAKADIA B M, QAED AHMED A A, LAMBONI L, et al. Engineering homologous platelet-rich plasma, platelet-rich plasma-derived exosomes, and mesenchymal stem cell-derived exosomes-based dual-crosslinked hydrogels as bioactive diabetic wound dressings[J]. Bioactive Materials, 2023, 28: 74-94.
doi: 10.1016/j.bioactmat.2023.05.002 pmid: 37234363 |
| [65] | SADEGHIANMARYAN A, AHMADIAN N, WHEATLEY S, et al. Advancements in 3D-printable polysaccharides, proteins, and synthetic polymers for wound dressing and skin scaffolding: a review[J]. International Journal of Biological Macromolecules, 2024.DOI:10.1016/j.ijbiomac.2024.131207. |
| [66] | YANG J, WANG Z, LIANG X, et al. Multifunctional polypeptide-based hydrogel bio-adhesives with pro-healing activities and their working principles[J]. Advances in Colloid and Interface Science, 2024.DOI:10.1016/j.cis.2024.103155. |
| [67] | ZHANG Y, WANG X, ZHU S, et al. Serum albumin hydrogels designed by protein re-association for self-powered intelligent interactive systems[J]. Energy Storage Materials, 2024.DOI:10.1016/j.ensm.2024.103266. |
| [68] | XIONG Q, YANG Z, ZHANG X. Flexible triboelectric nanogenerator based on silk fibroin-modified carbon nanotube arrays[J]. Chemical Engineering Journal, 2024.DOI:10.1016/j.cej.2024.148986. |
| [69] | JIANG W, LI H, LIU Z, et al. Fully bioabsorbable natural-materials-based triboelectric nanogenerators[J]. Advanced Materials, 2018.DOI:10.1002/adma.201801895. |
| [70] | CAO X, XIONG Y, SUN J, et al. Multidiscipline applications of triboelectric nanogenerators for the intelligent era of internet of things[J]. Nano-Micro Letters, 2023, 15(1):258-298. |
| [71] | GUO Y, ZHANG X S, WANG Y, et al. All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring[J]. Nano Energy, 2018, 48: 152-160. |
| [72] | TAN X, WANG S, YOU Z, et al. High performance porous triboelectric nanogenerator based on silk fibroin@MXene composite aerogel and PDMS sponge[J]. ACS Materials Letters, 2023, 5(7): 1929-1937. |
| [73] | ARIF Z U, KHALID M Y, NOROOZI R, et al. Additive manufacturing of sustainable biomaterials for biomedical applications[J]. Asian Journal of Pharmaceutical Sciences, 2023. DOI:10.1016/j.ajps.2023.100812. |
| [74] | GORE P M, NAEBE M, WANG X, et al. Nano-fluoro dispersion functionalized superhydrophobic degummed & waste silk fabric for sustained recovery of petroleum oils & organic solvents from wastewater[J]. Journal of Hazardous Materials, 2022. |
| [75] |
XIE X, ZHENG Z, WANG X, et al. Low-density silk nanofibrous aerogels: fabrication and applications in air filtration and oil/water purification[J]. ACS Nano, 2021, 15(1): 1048-1058. DOI:10.1016/j.jhazmat.2021.127822.
pmid: 33439624 |
| [76] | ZHAO W B, WANG Y, LI F K, et al. Highly antibacterial and antioxidative carbon nanodots/silk fibroin films for fruit preservation[J]. Nano Letters, 2023, 23(24): 11755-11762. |
| [1] | 詹克静, 杨鑫, 张应龙, 张昕, 潘志娟. 自凝聚丝素蛋白微纳米纤维膜的制备及其力学增强[J]. 纺织学报, 2025, 46(02): 10-19. |
| [2] | 陈琪, 武萁, 徐锦琳, 贾浩. 织物基图案化导电矩阵的自组装成形及传感应用[J]. 纺织学报, 2025, 46(02): 218-226. |
| [3] | 张瑞成, 张文清, 吕哲, 许多, 刘可帅, 徐卫林. 基于自捻纺的嵌入式低扭矩复合纱性能分析[J]. 纺织学报, 2025, 46(02): 78-85. |
| [4] | 雷福旺, 冯其, 侯奥菡, 赵振鸿, 谭佳兆, 赵景, 王先锋. 聚偏氟乙烯-聚丙烯腈/SiO2单向导湿纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 1-8. |
| [5] | 杨鑫, 张昕, 潘志娟. 丝素纳米原纤增强再生丝素蛋白/聚乙烯醇纤维的结构与性能[J]. 纺织学报, 2024, 45(11): 1-9. |
| [6] | 杜蕾, 王士杰, 蒋之铭, 朱平. 无卤无磷阻燃聚酰胺超细纤维合成革的制备及其性能[J]. 纺织学报, 2024, 45(11): 162-169. |
| [7] | 李蒙, 戴梦男, 俞杨销, 王建南. 丝素蛋白基骨修复材料的应用研究进展[J]. 纺织学报, 2024, 45(10): 224-231. |
| [8] | 王勃翔, 徐航丹, 李佳, 林杰, 程德红, 路艳华. 柞蚕丝素纳米纤维温敏复合膜制备及其生物相容性[J]. 纺织学报, 2024, 45(09): 18-25. |
| [9] | 王辉, 周伟, 陈一哲, 龙晚昕, 王金伙. 三角形编织工艺数字化建模方法[J]. 纺织学报, 2024, 45(06): 75-81. |
| [10] | 李朝威, 成悦, 苏新, 陈鹏飞, 李大伟, 付译鋆. 聚偏氟乙烯纳米纤维的结构调控及其在生物医学领域应用研究进展[J]. 纺织学报, 2024, 45(04): 229-237. |
| [11] | 张静, 丛洪莲, 蒋高明. 纬编双面移圈织物多层弹簧-质点结构模型构建与实现[J]. 纺织学报, 2024, 45(01): 106-111. |
| [12] | 常辰玉, 王雨薇, 原旭阳, 刘锋, 卢致文. 基于交织点改进弹簧-质点模型的纬编针织物动态变形模拟[J]. 纺织学报, 2024, 45(01): 99-105. |
| [13] | 赵俊杰, 蒋高明, 程碧莲, 李炳贤. 毛衫绞花织物的三维仿真与实现[J]. 纺织学报, 2023, 44(12): 81-87. |
| [14] | 雷彩虹, 俞林双, 金万慧, 朱海霖, 陈建勇. 丝素蛋白/壳聚糖复合纤维膜的制备与应用[J]. 纺织学报, 2023, 44(11): 19-26. |
| [15] | 张子凡, 李鹏飞, 王建南, 许建梅. 丝素蛋白载药纳米粒的研究进展[J]. 纺织学报, 2023, 44(10): 205-213. |
|
||