纺织学报 ›› 2025, Vol. 46 ›› Issue (03): 90-99.doi: 10.13475/j.fzxb.20230901401

• 纺织工程 • 上一篇    下一篇

抗菌除臭复合功能机织物的服用性能

王浙峰1,2, 蔡王丹1,3,4, 李诗雅1,3,4, 徐青艺2, 张红霞1,3,4, 祝成炎1,3,4, 金肖克1,3,4()   

  1. 1.浙江理工大学 先进纺织材料与制备技术教育部重点实验室, 浙江 杭州 310018
    2.浙江敦奴联合实业股份有限公司, 浙江 海宁 314400
    3.浙江理工大学 纺织纤维材料与加工技术国家地方联合工程研究中心, 浙江 杭州 310018
    4.浙江理工大学 浙江省纤维材料和加工技术研究重点实验室, 浙江 杭州 310018
  • 收稿日期:2023-09-07 修回日期:2024-10-18 出版日期:2025-03-15 发布日期:2025-04-16
  • 通讯作者: 金肖克(1989—),男,讲师。主要研究方向为现代纺织技术与高光谱成像技术。E-mail:xiaoke.jin@zstu.edu.cn
  • 作者简介:王浙峰(1978—),男,高级工程师,硕士。主要研究方向为纺织服装产品研究与开发。
  • 基金资助:
    海宁市科技计划项目(2020017);海宁市科技计划项目(2021117)

Wearability of woven fabrics with antibacterial and odorizing composite functions

WANG Zhefeng1,2, CAI Wangdan1,3,4, LI Shiya1,3,4, XU Qingyi2, ZHANG Hongxia1,3,4, ZHU Chengyan1,3,4, JIN Xiaoke1,3,4()   

  1. 1. Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Zhejiang Dunnu United Industrial Co., Ltd., Haining, Zhejiang 314400, China
    3. National & Local Joint Engineering Research Center for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    4. Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2023-09-07 Revised:2024-10-18 Published:2025-03-15 Online:2025-04-16

摘要: 为探讨纬纱中蜂窝除臭涤纶和抗菌锦纶含量的变化、织物组织对织物功能性(抗菌功能与除异味功能)和基本服用性能的影响,以桑蚕丝作为经纱原料,蜂窝除臭涤纶纱线和抗菌锦纶纱线作为纬纱原料,试织了14种交织物试样,其中9种织物组织结构相同,纬纱中蜂窝除臭涤纶纱线和抗菌锦纶纱线投纬比不同,其它5种织物纬纱投纬比一致、组织结构不同。测试织物的除臭性能、抗菌性能以及基本服用性能,并进行数据统计和分析,最后使用模糊数学综合评估法选出功能性兼服用性最佳的试样。结果表明:蜂窝除臭涤纶纱线与抗菌锦纶投纬比为4∶1时,织物的综合性能最好;织物组织为八枚缎纹时,织物的综合性能最好。

关键词: 抗菌功能, 除异味功能, 投纬比, 织物组织, 交织机织物, 蚕丝, 抗菌锦纶, 蜂窝除臭涤纶纱

Abstract:

Objective Antibacterial textiles are the textiles with antibacterial agents in the interior or surface of fibers through physical or chemical treatment, which adhere and evenly diffuse on the surface of fibers to achieve long-lasting antibacterial properties. It is known that antibacterial textiles cannot completely remove textile odors, and the market demand for textiles with deodorizing functions is high. This article aims to explore the effects of the picking ratio of two types of functional yarns as well as fabric structure, and to quantitatively and systematically analyze the samples with the best comprehensive performance through mathematical methods.

Method This article selects mulberry silk as the warp yarn, and antibacterial nylon and honeycomb deodorized polyester yarns as the weft. Through controlling the parameters, the performance in the antibacterial function, deodorizing function, and other wearing properties of the fabric were explored under different factors. A sample with the best comprehensive performance was found through fuzzy mathematics comprehensive evaluation method.

Results When other conditions of the fabric are same, the antibacterial performance of the fabric showed improvement with the increase of the antibacterial nylon content in the weft yarn. When the antibacterial nylon content in the weft yarn was increased from 0% to 21.44% (i.e. the ratio of honeycomb deodorized polyester yarn to antibacterial nylon in the weft yarn being 4∶1), the antibacterial rate of the fabric against E. coli and S.aureus reached over 90%, showing a rapid growth. When the antibacterial nylon content in the weft yarn continues to increase, the antibacterial rate of the fabric tended to be constant. When all other conditions of the fabric are same, the deodorizing function of the fabric demonstrated increases with the increase of the content of honeycomb deodorized polyester in the weft yarn. Among the five types of woven fabrics, plain weave fabric showed the worst deodorizing effect, while satin fabric with six variations has the best deodorizing effect. In the A series samples, the longitudinal and transverse breaking strength of the samples gradually decreased along with the decrease in content of antibacterial nylon in the weft yarn, be ause of the superior breaking strength of antibacterial nylon compared to honeycomb deodorized yarn. In B series samples, different structures demonstrated certain impact on the tensile fracture performance of the samples. The plain weave fabric exhibited the best fabric strength, while double damask showed the worst. Owing to the honeycomb structure of the deodorizing fiber, the air permeability of the A series sample was enhanced with the increase of the honeycomb deodorizing yarn in the weft yarn. The fabric structure in the B series samples also had a significant impact on the air permeability, with double damask fabric having the best permeability and plain fabric having the worst. With the change of the picking ratio, the fluctuation of the sharp elastic wrinkle recovery angle and the slow elastic wrinkle recovery angle of the sample was not significant, and the order of wrinkle recovery performance of different structure samples was found to be plain weave < twill<six variable satin< double damask <honeycomb tissue. The difference in the content of honeycomb deodorizing yarn and antibacterial nylon in weft yarn showed little impact on the anti-fuzzing and pilling performance of the fabric, while the fabric structure has a significant impact. It was verified that the less likely the yarn was to slip, the better its anti-pilling performance would be. Plain weave fabrics showed the best anti-pilling performance, while honeycomb structure showed the worst. Using fuzzy mathematics comprehensive evaluation to select the sample with the best comprehensive performance in each series, it was found that sample A8 had the best comprehensive performance in the A series samples, and, sample B4 had the best comprehensive performance in the B series samples.

Conclusion When the picking ratio of honeycomb deodorized polyester yarn to antibacterial nylon was 4∶1, the comprehensive performance of the fabric is the best. When the fabric structure is double damask, the comprehensive performance of the fabric is the best.

Key words: antibacterial function, deodorzing function, picking ratio, fabric weave, interwoven fabric, silk, antibacterial nylon, honeycomb deodorized polyester yarn

中图分类号: 

  • TS101.923

表1

不同投纬比条件下织造织物的规格参数"

试样编号 甲纬与
乙纬比例
蜂窝除臭涤纶
纱线含量/%
抗菌锦纶
含量/%
A1 0∶1 0.00 100.00
A2 1∶4 19.64 80.36
A3 1∶3 24.55 75.45
A4 1∶2 32.73 67.27
A5 1∶1 49.10 50.90
A6 2∶1 65.47 34.53
A7 3∶1 73.65 26.35
A8 4∶1 78.56 21.44
A9 1∶0 100.00 0

表2

不同组织结构织造织物的规格参数"

试样编号 组织 蜂窝除臭涤纶纱
线含量/%
抗菌锦纶
含量/%
B1 平纹 49.10 50.90
B2 二上一下右斜纹 49.10 50.90
B3 六枚变则缎纹 49.10 50.90
B4 八枚缎纹 49.10 50.90
B5 蜂巢组织 49.10 50.90

图1

不同织物试样对大肠杆菌、金黄色葡萄球菌抑菌效果对比"

表3

大肠杆菌抑菌率的四次模型方差分析"

来源 平方和 自由度 均方 F p 显著性
模型 1 212.14 4 303.04 379.44 < 0.000 1 显著
线性混合
模型
536.12 1 536.12 671.30 < 0.000 1
x1x2 286.97 1 286.97 359.33 < 0.000 1
x1x2(x1-x2) 203.79 1 203.79 255.17 < 0.000 1
x1x2(x1-x2)2 31.21 1 31.21 39.08 0.003 3
残差 3.19 4 0.798 6
总变异 1 215.34 8
R2=
0.997 4
R a d j 2=
0.994 7
R p r e 2=
0.676 1

表4

对金黄色葡萄球菌抑菌率的四次模型方差分析"

来源 平方和 自由度 均方 F p 显著性
模型 861.35 4 215.34 342.29 <0.000 1 显著
线性混合
模型
471.19 1 471.19 748.97 <0.000 1
x1x2 216.78 1 216.78 344.59 <0.000 1
x1x2(x1-x2) 90.64 1 90.64 144.08 0.000 3
x1x2(x1-x2)2 5.01 1 5.01 7.96 0.047 7
残差 2.52 4 0.629 1
总变异 863.86 8
R2=
0.997 1
R a d j 2=
0.994 2
R p r e 2=
0.555 7

图2

抑菌率模型图"

表5

氨气去除率的二次模型方差分析"

来源 平方和 自由度 均方 F p 显著性
模型 2 252.43 2 1 126.21 30.51 0.000 7 显著
线性混合
模型
2 046.45 1 2 046.45 55.44 0.000 3
x1x2 205.98 1 205.98 5.58 0.056 1
残差 221.46 6 36.91
总变异 2 473.89 8
R2=
0.910 5
R a d j 2=
0.880 6
R p r e 2=
0.834 1

图3

A系列织物的氨气去除率模型图"

表6

纱线强伸性测试结果"

纱线种类 断裂伸长率/% 断裂强力/cN 断裂强度/(cN·dtex-1 )
蜂窝除臭涤纶 9.5 210.7 1.8
抗菌锦纶 17.5 790.8 6.7

表7

A系列试样拉伸性能测试结果"

试样
编号
断裂强力/N 断裂伸长/mm 断裂伸长率/%
经向 纬向 经向 纬向 经向 纬向
A1 627.2 484.3 52.1 54.2 26.05 27.10
A2 632.3 289.3 50.9 27.9 25.45 13.95
A3 617.6 282.3 50. 7 29.1 25.35 14.55
A4 624.0 285.7 51.7 30.5 25.85 15.25
A5 575.3 257.7 48.5 31.9 24.25 15.95
A6 557.0 240.0 47.6 33.7 23.80 16.85
A7 541.3 225.7 45.6 31.4 22.80 15.70
A8 536.3 216.2 43.5 29.6 21.75 14.80
A9 510.9 215.7 41.7 28.2 20.85 14.10

表8

B系列试样拉伸性能测试结果"

试样
编号
断裂强力/N 断裂伸长/mm 断裂伸长率/%
经向 纬向 经向 纬向 经向 纬向
B1 575.3 257.7 48.5 31.9 24.25 15.95
B2 564.3 199.3 46.1 28.0 23.05 14.00
B3 504.3 197.3 43.6 26.7 21.80 13.35
B4 486.1 185.3 41.7 24.0 20.85 12.00
B5 492.7 192.0 44.7 26.7 22.35 13.35

表9

A系列试样透气性测试结果"

试样
编号
纬纱中蜂窝除臭
纤维含量/%
纬纱中抗菌
锦纶含量/%
透气率/
(mm·s-1)
A1 0 100.00 16.96
A2 19.64 80.36 26.72
A3 24.55 75.45 28.09
A4 32.73 67.27 31.80
A5 49.10 50.90 47.29
A6 65.47 34.53 70.07
A7 73.65 26.35 86.63
A8 78.56 21.44 142.12
A9 100.00 0 164.67

表10

B系列试样透气性测试结果"

试样
编号
纬纱中蜂窝除臭
纱线含量/%
纬纱中抗菌
锦纶含量/%
组织 透气率/
(mm·s-1)
B1 49.10 50.90 平纹 47.95
B2 二上一下斜纹 240.30
B3 六枚变则缎纹 854.73
B4 八枚缎纹 987.93
B5 蜂巢组织 567.30

表11

A系列试样折皱回复性测试结果"

试样
编号
纬纱中蜂窝
除臭纱线
含量/%
纬纱中
抗菌锦纶
含量/%
急弹性折皱
回复角/(°)
缓弹性折皱
回复角/(°)
经向 纬向 经向 纬向
A1 0 100.00 88.76 71.93 113.85 84.00
A2 19.64 80.36 93.64 72.56 113.13 85.62
A3 24.55 75.45 98.80 68.75 112.42 82.17
A4 32.73 67.27 89.17 67.44 108.8 80.53
A5 49.10 50.90 86.74 67.82 108.11 80.93
A6 65.47 34.53 86.18 66.39 110.99 79.38
A7 73.65 26.35 83.37 61.19 107.15 78.73
A8 78.56 21.44 83.45 61.67 106.20 78.41
A9 100.00 0 76.15 60.20 103.49 76.77

表12

B系列试样折皱回复性测试结果"

试样
编号
织物
组织
急弹性折皱
回复角/(°)
缓弹性折皱
回复角/(°)
经向 纬向 经向 纬向
B1 平纹 72.59 61.25 80.65 70.12
B2 二上一下斜纹 88.40 74.77 99.50 86.26
B3 六枚变则缎纹 93.68 94.64 103.23 97.86
B4 八枚缎纹 93.87 94.10 107.68 108.14
B5 蜂巢组织 111.90 105.52 131.09 119.73

表13

起毛起球性能评级表"

试样
编号
纬纱中蜂窝除臭
涤纶含量/%
纬纱中抗菌
锦纶含量/%
起毛起球
等级
A1 0 100.00 5
A2 19.64 80.36 5
A3 24.55 75.45 4.5
A4 32.73 67.27 5
A5 49.10 50.90 5
A6 65.47 34.53 4.5
A7 73.65 26.35 4.5
A8 78.56 21.44 4.5
A9 100.00 0 5
B1 49.10 50.90 5
B2 49.10 50.90 4.5
B3 49.10 50.90 3.5
B4 49.10 50.90 3
B5 49.10 50.90 1.5

图4

指标层次结构"

表14

评价因素与权重系数"

评价因素 平均得分 权重系数
抑菌性能 26.7 0.267
除异味性能 42.1 0.421
拉伸断裂性能 3.2 0.032
透气性 9.6 0.096
折皱回复性能 4.1 0.041
起毛起球等级 5.3 0.053
其它性能 9.1 0.091
[1] 曹聪聪, 汤龙世, 刘元军, 等. 无机抗菌织物的研究进展[J]. 纺织学报, 2022, 43(11):203-211.
doi: 10.13475/j.fzxb.20210309409
CAO Congcong, TANG Longshi, LIU Yuanjun, et al. Research progress of inorganic antibacterial fabrics[J]. Journal of Textile Research, 2022, 43(11):203-211.
doi: 10.13475/j.fzxb.20210309409
[2] HU Y, LI Y, CAI W, et al. Comfort and functional evaluation of silk/ profiled antibacterial polyester fabric[J]. Journal of The Textile Institute, 2024, 115(5): 1-13.
[3] 李诗雅, 金肖克, 田伟, 等. 维生素E护肤纺织品的研究现状及发展趋势[J]. 现代纺织技术, 2023, 31(1):293-300.
doi: 10.19398/j.att.202206002
LI Shiya, JIN Xiaoke, TIAN Wei, et al. Research status and development trend of vitamin E loaded cosmetotextile products[J]. Advanced Textile Technology, 2023, 31(1): 293-300.
doi: 10.19398/j.att.202206002
[4] ISLAM-Ul-Shahid, SUN G. Thermodynamics, kinetics, and multifunctional finishing of textile materials with colorants extracted from natural renewable sources[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9):7451-7466.
[5] 胡云中泽, 夏帅飞, 祝成炎, 等. 低温阳离子抑菌吸湿快干涤纶织物的开发与性能研究[J]. 丝绸, 2022, 59(1):51-57.
HU Yunzhongze, XIA Shuaifei, ZHU Chengyan, et al. Studies on the development and performance of low temperature cationic antibacterial hygroscopic fast drying polyester fabric[J]. Journal of Silk, 2022, 59(1):51-57.
[6] 沈妙音, 王姗姗, 乔明伟, 等. 抗菌改性聚酯纤维混纺机织面料的抗菌性能[J]. 丝绸, 2021, 58(8):18-23.
SHEN Miaoyin, WANG Shanshan, QIAO Mingwei, et al. Research on the antibacterial properties of anti-microbial modified polyester blended weaving fabric[J]. Journal of Silk, 2021, 58(8):18-23.
[7] 蒋佳怡, 张红霞, 祝成炎, 等. 吸湿快干抗菌真丝交织物的性能研究[J]. 丝绸, 2021, 58(6):15-19.
JIANG Jiayi, ZHANG Hongxia, ZHU Chengyan, et al. Research on the properties of hygroscopic and quick-drying antibacterial silk intertextures[J]. Journal of Silk, 2021, 58 (6):15-19.
[8] 刘伟时. 抗菌纤维的发展及抗菌纺织品的应用[J]. 化纤与纺织技术, 2011, 40(3):22-27.
LIU Weishi. Development of antibacterial fiber and application of antibacterial textile[J]. Chemical Fiber & Textile Technology, 2011, 40(3):22-27.
[9] 刘亚楠, 贺荣, 张惠芳, 等. 抗菌负氧离子真丝交织物墙布窗帘织物的性能[J]. 丝绸, 2023, 60(7):26-32.
LIU Yanan, HE Rong, ZHANG Huifang, et al. Properties of antibacterial and negative oxygen ion silk fabrics for wall cloth curtains[J]. Journal of Silk, 2023, 60(7):26-32.
[10] MCQUEEN R H, VAEZAFSHAR S. Odor in textiles: a review of evaluation methods, fabric characteristics, and odor control technologies[J]. Textile Research Journal, 2020, 90(9/10): 1157-1173.
[11] 蔡王丹, 范硕, 田伟, 等. 纺织品异味及除异味技术研究现状及进展[J]. 丝绸, 2023, 60(3):82-89.
CAI Wangdan, FAN Shuo, TIAN Wei, et al. Research status and progress of textile odors and deodorizing technology[J]. Journal of Silk, 2023, 60(3):82-89.
[12] ABNEY S E, IJAZ M K, MCKINNEY J, et al. Laundry hygiene and odor control: state of the science[J]. Applied and Environmental Microbiology, 2021, 87(14):1-12.
[13] 顾娟红, 严敏, 柳艳, 等. 吹扫捕集-气相色谱/质谱法测定纺织品中多种异味物质[J]. 印染助剂, 2021, 38(4):55-59.
GU Juanhong, YAN Min, LIU Yan, et al. Determination of odour compounds in textiles by gas purge and trap-gas chromatography mass spectrometry[J]. Textile Auxiliaries, 2021, 38(4):55-59.
[14] 刘荣飞. 一种等离子改性接枝抗菌纤维及其制备方法、应用: 111206412A[P]. 2020-05-29.
LIU Rongfei. A kind of plasma modified graft antibacterial fiber and its preparation method and application: 111206412A[P]. 2020-05-29.
[15] 谢建强. 高效蜂窝除汗臭纤维及其制备工艺与应用: 116732633A[P]. 2023-09-12.
XIE Jianqiang. High efficiency honeycomb deodorant fiber and its preparation technology and application: 116732633A[P]. 2023-09-12.
[16] 杨恩惠, 沈海生, 邱华. 机织物透气性研究进展[J]. 服装学报, 2020, 5(1): 6-11.
YANG Yinhui, SHEN Haisheng, QIU Hua. Research progress on air permeability of woven fabrics[J]. Journal of Clothing Research, 2020, 5(1): 6-11.
[17] 孙浪涛. 纯棉机织物结构与透气性的关系研究[J]. 武汉纺织大学学报, 2018, 31(6): 11-14.
SUN Langtao. Study on the relationship between structure and permeability of pure cotton woven fabric[J]. Journal of Wuhan Textile University, 2018, 31(6): 11-14.
[18] CHAKRABORTY S, PRASAD K. A quality function deployment-based expert system for cotton fibre selection[J]. Journal of The Institution of Engineers (India): Series E, 2018, 99(1): 43-53.
[19] WANG Y J. A fuzzy multi-criteria decision-making model based on simple additive weighting method and relative preference relation[J]. Applied Soft Computing, 2015, 30: 412-420.
[1] 杨鑫, 张昕, 潘志娟. 丝素纳米原纤增强再生丝素蛋白/聚乙烯醇纤维的结构与性能[J]. 纺织学报, 2024, 45(11): 1-9.
[2] 王勃翔, 徐航丹, 李佳, 林杰, 程德红, 路艳华. 柞蚕丝素纳米纤维温敏复合膜制备及其生物相容性[J]. 纺织学报, 2024, 45(09): 18-25.
[3] 刘术, 侯腾, 周乐乐, 李祥龙, 杨斌. 桑蚕的强制牵伸抽丝及其纤维性能[J]. 纺织学报, 2024, 45(06): 11-15.
[4] 黄晴, 苏振岳, 周一帆, 刘青松, 李懿, 赵萍, 王鑫. 饲料与桑叶饲喂的家蚕蚕丝品质分析[J]. 纺织学报, 2024, 45(05): 1-9.
[5] 陈锟, 许晶莹, 郑怡倩, 李加林, 洪兴华. 丝网印刷还原氧化石墨烯改性蚕丝织物的导电与电热性能[J]. 纺织学报, 2024, 45(03): 122-128.
[6] 韩烨, 田苗, 蒋青昀, 苏云, 李俊. 织物-空气层-皮肤三维结构建模及其传热模拟[J]. 纺织学报, 2024, 45(02): 198-205.
[7] 谭婷, 李哲阳, 马明波, 周文龙. 天然绿色蚕丝抗氧化组分向皮肤迁移的特性研究[J]. 纺织学报, 2023, 44(10): 75-80.
[8] 何铠君, 沈加加, 刘国金. 石墨烯改性蚕丝的制备方法及其应用研究进展[J]. 纺织学报, 2023, 44(09): 223-231.
[9] 王旭, 闵尔君, 李少聪, 张文强, 彭旭光. 基于平织机的管状三维机织物设计及其矩阵模型[J]. 纺织学报, 2023, 44(08): 103-109.
[10] 齐迪, 丁洪, 王祥荣. 儿茶素络合染料的制备及其对蚕丝织物的染色性能[J]. 纺织学报, 2023, 44(03): 111-118.
[11] 贾艳梅, 于学智. 柞叶染料对柞蚕丝织物的染色及其吸附动力学研究[J]. 纺织学报, 2023, 44(03): 119-125.
[12] 文嘉琪, 李新荣, 李兴兴, 吴柳波. 面向服装面料自动缝合的缝纫工艺参数建模[J]. 纺织学报, 2023, 44(03): 158-167.
[13] 王瑞, 司银松, 芦浩浩, 杲爽, 傅雅琴. 基于近红外光谱法的桑蚕丝接枝率快速定量测定[J]. 纺织学报, 2022, 43(11): 29-34.
[14] 李艾元, 施心雨, 岳万福, 游卫云. 丝素蛋白水凝胶支架的制备及其性能[J]. 纺织学报, 2022, 43(06): 44-48.
[15] 薛宝霞, 史依然, 张凤, 秦瑞红, 牛梅. 无卤氧化铁改性涤纶阻燃织物的制备及其性能[J]. 纺织学报, 2022, 43(05): 130-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!