纺织学报 ›› 2025, Vol. 46 ›› Issue (04): 162-170.doi: 10.13475/j.fzxb.20240905801

• 服装工程 • 上一篇    下一篇

基于参数化设计和数值模拟仿真技术的运动文胸版型优化

陈馨蔚1, 顾冰菲1,2, 田佳莉3, 周思凡1, 刘瑜希1, 刘金灵1, 易洁伦4, 孙玥1,2()   

  1. 1.浙江理工大学 服装学院, 浙江 杭州 310018
    2.丝绸文化传承与产品设计数字化技术文化和旅游部重点实验室, 浙江 杭州 310018
    3.东华大学 服装与艺术设计学院, 上海 200051
    4.香港理工大学 时装及纺织学院, 香港 999077
  • 收稿日期:2024-09-25 修回日期:2024-12-25 出版日期:2025-04-15 发布日期:2025-06-11
  • 通讯作者: 孙玥(1988—),女,讲师,博士。主要研究方向为服装数字化仿真。E-mail: sunyue@zstu.edu.cn
  • 作者简介:陈馨蔚(2001—),女,硕士生。主要研究方向为服装数字化仿真。
  • 基金资助:
    教育部人文社科项目(24YJCZH268);浙江省教育厅一般科研项目(Y202456764);国家大学生创新训练项目(202410338040);浙江省哲学社会科学规划艺术学课题资助项目(24NDJC171YB)

Optimization design method for sports bra using CAD/CAE technology

CHEN Xinwei1, GU Bingfei1,2, TIAN Jiali3, ZHOU Sifan1, LIU Yuxi1, LIU Jinling1, YICK Kit-lun4, SUN Yue1,2()   

  1. 1. School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Key Laboratory of Silk Culture Heritage and Products Design Digital Technology, Ministry of Culture and Tourism, Hangzhou, Zhejiang 310018, China
    3. College of Fashion and Design, Donghua University, Shanghai 200051, China
    4. School of Fashion & Textiles, The Hong Kong Polytechnic University, Hong Kong 999077, China
  • Received:2024-09-25 Revised:2024-12-25 Published:2025-04-15 Online:2025-06-11

摘要: 为探究运动文胸结构设计参数对乳房位移控制及压力舒适性的影响,进一步优化运动文胸款式设计,提出了一种结合参数化设计和数值模拟仿真技术的方法,从运动文胸版型的数字化和人体生物力学建模仿真角度出发,通过选取鸡心高度、侧比高度和背部结构3种结构参数作为研究对象,分析设计参数对运动文胸性能的影响。结果表明:单独改变结构参数或同时改变鸡心高和背部结构均能有效影响抑制乳房位移效果和胸底部的动静态接触压力,最大运动控制效果可提升1.23%,且改变鸡心高度或背部结构(改为U型)时,不会抑制另一个参数的优化效果;此外,与文胸接触的人体部位,其动静态压力的最大值分布排序依次为肩部、胸底部、身体侧边与底围接触区域。本文提出的研究方法能够帮助运动文胸开发人员从功能性和舒适性角度更好地理解文胸结构性能,为消费者提供更加贴合身体且穿着舒适的运动文胸。

关键词: 运动文胸, 版型设计, 乳房位移, 接触压力, 有限元仿真, 动态接触模型

Abstract:

Objective Traditional sports bras often do not adequately meet the unique biomechanical needs of women during physical activities, leading to discomfort and potential health problems. In order to explore the influence of parameter structure on the control performance and pressure comfort of sports bra, to provide consumers with more body-fitting, strong support and comfortable sports bra. Combining computer aided design (CAD) and computer aided engineering (CAE) techniques, a human-sports bra contact model was constructed to evaluate the performance of sports bras with different design parameters from two aspects of control level and contact pressure.

Method The 3-D body scanner was used to capture female chest data to create geometric models of the female breasts, torso, and sports bra. The sports bra outline was established using two-dimensional pattern design and three-dimensional virtual try-on. Specifically, design parameters such as the height of the gore, side band, and back structure were modified in conjunction with CAD methods, and the geometric model of the bra was quickly obtained in the virtual fitting environment. After assemblying using an interference fitting method, simulations were conducted to analyze the displacement of the breast along the Z-axis and the effects of static and dynamic pressure.

Results The 3-D configuration of sports bra and the human body contact model, developed using digital design, was validated through motion capture experiments focused on nipple displacement. The root mean square error (RMSE) were determined to be 5.52 mm (braless condition) and 1.11 mm (wearing sports bra), confirming the model's validity and feasibility. Combining computer aided design(CAD) and computer aided engineering(CAE), five distinct sports underwear models were created by varying three design parameters: the gore height, the side wing height and the back structure. The experimental data indicated that modifying either the structural parameters alone or both the core height and the back structure simultaneously could significantly reduce breast displacement compared to the basic sports bra, with the maximum reduction reaching 1.23%. The overall displacement inhibition effectiveness was ranked as JH_B > CH > B > JH > basic pattern. Regarding contact pressure, it was observed that under both dynamic and static conditions, the shoulder strap exhibited the highest contact pressure, followed by bottom breasts and side under-band regions. Notably, the contact pressure at the bottom breasts (3.32 to 3.71 kPa) exhibited the most significant variation. Compared with changing a single structural parameter (set in this study), the simultaneous change of the U-shaped back structure and the height of the core significantly affected the dynamic contact pressure of the side bottom and the bottom of the breast, and increase the pressure of the bottom and the bottom of the breast. The results showed that the JH_B sports bra model positively impacts the inhibition of displacement and the dynamic and static contact pressure at the bottom breasts. Consequently, altering one structural parameter does not negate the influence of the other. If it is necessary to enhance the control performance of the sports bra, it is recommended to adjust both parameters simultaneously.

Conclusion The innovative method combining CAD and CAE technology method proposed in this paper is capable of analyzing the influence of relevant bra design parameters on breast biomechanical dynamic response during running. By conducting a comparative analysis of breast displacement and dynamic contact pressure across various sports bra structural designs, this approach facilitates a comprehensive understanding of the functional and ergonomic aspects of sports bra design. Consequently, developers can optimize the design effectively to enhance fit, support, and comfort, thereby improving athletic performance and experience to meet consumer needs and preferences.

Key words: sports bra, pattern design, breast displacement, contact pressure, finite element simulation, dynamic contact model

中图分类号: 

  • TS941.2

图1

运动文胸款式图"

图2

人体几何模型建立过程"

图3

三维动作捕捉标记点示意图"

表1

胸部模型材料参数表"

人体部位 材料模型 材料系数/kPa
C10 C01 C11 C20 C30
胸部软组织 Mooney-Rivlin 0.3 0.31 2.5 4.7 3.8

图4

结构参数说明"

表2

模型参数变量及模型名称"

结构参数名称 参数变量 模型名称
未改变(背部结构为X型) 基础版
侧比高度 向上增加2.5 cm CH
背部结构 U型背部结构 B
鸡心高度 向上增加2 cm JH
鸡心高增加2 cm,后背结构改成U型 JH_B

图5

虚拟试衣"

图6

运动文胸几何模型"

表3

运动文胸参数表"

运动文胸面料区 弹性模量E/MPa 泊松比ʋ
肩带 1.18 0.34
前片 横向 1.11 0.28
纵向 1.14 0.31
后片 横向 1.08 0.27
纵向 1.12 0.30
底围 1.24 0.38

图7

人体-运动文胸各部位的有限元模型"

图8

实验测量和有限元模拟的乳点位移"

表4

不同参数变量下乳点的最大位移值"

模型类型 最大位移/mm
基础版 46.97
CH(侧比增高2.5 cm) 46.58
B(U型背部结构) 46.60
JH(鸡心增高2 cm) 46.75
JH_B(鸡心增高2 cm+U背结构) 46.39

图9

静态接触压力云图"

图10

人体各部位最大接触压力分布区域"

表5

各部位静态模拟的最大接触压力值"

版型 静态压力/kPa
胸底部 侧边底围 肩带
基础版 3.04 1.96 5.43
CH 3.28 1.82 4.15
B 3.30 2.04 4.50
JH 3.37 2.00 4.14
JH_B 3.83 1.90 4.29

图11

有限元模拟穿着运动文胸的动态接触压力"

[1] LEME J C, BANKS L D S, REIS Y B D, et al. Sports bra but not sports footwear decreases breast movement during walking and running[J]. Journal of Biomechanics, 2020. DOI:10.1016/j.jbiomech.2020.110 014.
[2] RISIUS D, MILLIGAN A, BERNS J, et al. Understanding key performance indicators for breast support: an analysis of breast support effects on biomechanical, physiological and subjective measures during running[J]. Journal of Sports Sciences, 2017, 35(9): 842-851.
doi: 10.1080/02640414.2016.1194523 pmid: 27291899
[3] NORRIS M, BLACKMORE T, HORLER B, et al. How the characteristics of sports bras affect their perfo-rmance[J]. Ergonomics, 2020, 64(3): 410-425.
[4] 陈慧娴, 鲁虹, 李书洋, 等. 运动文胸结构设计要素对穿着舒适性的影响[J]. 纺织学报, 2019, 40(9): 159-166.
CHEN Huixian, LU Hong, LI Shuyang, et al. Influence of sports bra structural elements on wearing comfort[J]. Journal of Textile Research, 2019, 40(9): 159-166.
[5] LEE C W, YICK K L, NG S P, et al. Analysis of dynamic vertical breast displacement for the design of seamless moulded bras[J]. The Journal of The Textile Institute, 2021, 113(4): 637-646.
[6] OCRAN F M, JI Xiaofen, ZHAI Lina. A study to evaluate pressure distribution of different sports bras[J]. Journal of Engineered Fibers and Fabrics, 2022. DOI:10.1177/15589250221118643.
[7] 郑晶晶, 赵清瑶, 阎玉秀. 跑步运动中运动文胸对乳房振幅的影响[J]. 纺织学报, 2020, 41(3): 130-135.
ZHENG Jingjing, ZHAO Qingyao, YAN Yuxiu. Effect of sports bra on breast displacement amplitude during running[J]. Journal of Textile Research, 2020, 41(3): 130-135.
[8] 于莉君, 陈晓娜. 运动文胸下围围度对胸部位移的影响[J]. 时尚设计与工程, 2017(5):30-35.
YU Lijun, CHEN Xiaona. Effect of the sports bra circumference on the breast displacement[J]. The Journal of Fashion Design and Engineering, 2017(5):30-35.
[9] 范玉婷, 丁波, 王兆芳, 等. 底围宽度对运动文胸压力舒适性的影响[J]. 毛纺科技, 2023, 51(2): 77-83.
FAN Yuting, DING Bo, WANG Zhaofang, et al. Effect of bottom width on pressure comfort of sports bra[J]. Wool Textile Journal, 2023, 51(2): 77-83.
[10] 薛萧昱, 何佳臻, 王敏. 三维虚拟试衣技术在服装设计与性能评价中的应用进展[J]. 现代纺织技术, 2023, 31(2): 12-22.
XUE Xiaoyu, HE Jiazhen, WANG Min. Application progress of 3D virtual fitting technology in fashion design and performance evaluation[J]. Advanced Textile Technology, 2023, 31(2): 12-22.
[11] CHENG Z, KUZMICHEV V, ADOLPHE D. A digital replica of male compression underwear[J]. Textile Research Journal, 2019, 90(7/8): 877-895.
[12] HORIBA Y, AMANO T, INUI S, et al. Proposal of method for estimating clothing pressure of tight-fitting garment made from highly elastic materials: hybrid method using apparel CAD and finite element analysis software[J]. Journal of Fiber Science and Technology, 2021, 77(2): 76-87.
[13] 余玉坤, 孙玥, 侯珏, 等. 单层服装间隙量的动态有限元模型构建与仿真[J]. 纺织学报, 2022, 43(4): 124-132.
YU Yukun, SUN Yue, HOU Jue, et al. Dynamic finite element modeling and simulation of single layer clothing ease allowance[J]. Journal of Textile Research, 2022, 43(4): 124-132.
[14] ZHU C L. Establishment of the finite element model of human body wearing sports bra[C]// LONG W, YING B A, QI J. Textile Bioengineering and Informatics Symposium (TBIS) Proceedings.[n.l.]: Electr Network, 2020:167-172.
[15] SUN Y, YICK K L, YU W, et al. 3D bra and human interactive modeling using finite element method for bra[J]. Computer: Aided Design, 2019, 114:13-27.
[16] SUN Y, YICK K L, CAI Y Q, et al. Finite element analysis on contact pressure and 3D breast deformation for application in women's bras[J]. Fibers and Polymers, 2021, 22(10): 2910-2921.
[17] LIANG R X, YIP J, YU W, et al. Finite element-based machine learning method to predict breast displacement during running[J]. AATCC Journal of Research, 2022, 8(S1): 69-74.
[18] LIU S Y, SUN G W, ZUO H F, et al. Predicting the effect of bra pad specifications on breast deformation during jumping using a finite element method[J]. International Journal of Clothing Science and Technology, 2023, 35(5): 779-798.
[19] ZHANG S C, YICK K L, CHEN L H, et al. Finite-element modelling of elastic woven tapes for bra design applications[J]. The Journal of The Textile Institute, 2020, 111(10): 1470-1480.
[20] GOLBAD S, HAGHPANAHI M. Hyperelastic model selection of tissue mimicking phantom undergoing large deformation and finite element modeling for elastic and hyperelastic material properties[J]. Advanced Materials Research, 2012, 415: 2116-2120.
[21] SAMANI A, BISHOP J, YAFFE M J, et al. Biomechanical 3-D finite element modeling of the human breast using MRI data[J]. IEEE Transactions on Medical Imaging, 2001, 20(4): 271-279.
pmid: 11370894
[22] EDER M, RAITH S, JALALI J, et al. Comparison of different material models to simulate 3-D breast deformations using finite element analysis[J]. Annals of Biomedical Engineering, 2014, 42(4): 843-857.
doi: 10.1007/s10439-013-0962-8 pmid: 24346816
[23] LIANG R X, YIP J, YU W, et al. Numerical simulation of nonlinear material behaviour: Application to sports bra design[J]. Materials & Design, 2019. DOI:10.1016/j.matdes.2019.108177.
[24] 孙玥, 周凌芳, 周祺旋, 等. 运动内衣承托及其动态舒适性能的有限元分析[J]. 纺织学报, 2023, 44(9): 180-187.
SUN Yue, ZHOU Lingfang, ZHOU Qixuan, et al. Finite element analysis of supportive performance and dynamic comfort of sports bra[J]. Journal of Textile Research, 2023, 44(9): 180-187.
[25] 盛欣洋, 陈晓娜, 卢娅娅, 等. 面料拉伸性能与运动文胸防震功能的定量关系[J]. 纺织学报, 2024, 45(1): 161-167.
SHENG Xinyang, CHEN Xiaona, LU Yaya, et al. Quantitative relationship between fabric elasticity and shock absorption performance of sports bras[J]. Journal of Textile Research, 2024, 45(1): 161-167.
[26] YICK K L, KEUNG Y C, YU A, et al. Sports bra pressure: effect on body skin temperature and wear comfort[J]. International Journal of Environmental Research and Public Health, 2022. DOI:10.3390/ijerph192315765.
[1] 陶静, 汪俊亮, 张洁. 数据驱动与有限元仿真融合的纱线断裂强力分析方法[J]. 纺织学报, 2024, 45(02): 238-245.
[2] 盛欣洋, 陈晓娜, 卢娅娅, 李艳梅, 孙光武. 面料拉伸性能与运动文胸防震功能的定量关系[J]. 纺织学报, 2024, 45(01): 161-167.
[3] 孙玥, 周凌芳, 周祺旋, 张诗晨, 易洁伦. 运动内衣承托及其动态舒适性能的有限元分析[J]. 纺织学报, 2023, 44(09): 180-187.
[4] 吴佳玥, 吴巧英. 羽绒制品热传递的有限元仿真[J]. 纺织学报, 2022, 43(11): 154-162.
[5] 肖琪, 王瑞, 张淑洁, 孙红玉, 王静茹. 基于ABAQUS的涤/棉混纺机织物起球过程有限元仿真[J]. 纺织学报, 2022, 43(06): 70-78.
[6] 牛雪娟, 徐妍慧. 不同流通间隙排布条件下碳纤维束展纤行为研究[J]. 纺织学报, 2022, 43(06): 165-170.
[7] 孙亚博, 李立军, 马崇启, 吴兆南, 秦愈. 基于ABAQUS的筒状纬编针织物拉伸力学性能模拟[J]. 纺织学报, 2021, 42(02): 107-112.
[8] 戴宁, 彭来湖, 胡旭东, 崔英, 钟垚森, 王越峰. 纬编针织机织针自由状态下固有频率测试方法[J]. 纺织学报, 2020, 41(11): 150-155.
[9] 王建萍, 徐朔, 王竹君, 姚晓凤, 李永贵. 智能运动文胸电子监测系统设计方案与实施[J]. 纺织学报, 2020, 41(06): 105-111.
[10] 郑晶晶, 赵清瑶, 阎玉秀. 跑步运动中运动文胸对乳房振幅的影响[J]. 纺织学报, 2020, 41(03): 130-135.
[11] 陈慧娴, 鲁虹, 李书洋, 左恒. 运动文胸结构设计要素对穿着舒适性的影响[J]. 纺织学报, 2019, 40(09): 159-166.
[12] 周捷, 马秋瑞. 基于BP神经网络的运动文胸肩带属性与乳房振幅的函数关系[J]. 纺织学报, 2019, 40(09): 186-191.
[13] 陈晓娜, 王二会. 文胸钢圈对乳房竖直位移的影响[J]. 纺织学报, 2019, 40(07): 133-137.
[14] 高晓晓 江红霞. 应用3D打印技术的运动文胸模杯个性化定制[J]. 纺织学报, 2018, 39(11): 135-139.
[15] 李瑛慧 谢春萍 刘新金. 三原组织织物拉伸力学性能有限元仿真[J]. 纺织学报, 2017, 38(11): 41-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!