纺织学报 ›› 2025, Vol. 46 ›› Issue (04): 235-243.doi: 10.13475/j.fzxb.20240306802

• 综合述评 • 上一篇    下一篇

生物炭在印染废水处理中的应用研究进展

金汝诗1,2, 陈万明3, 刘国金1,2, 刘承海2, 戚栋明1,2, 翟世民1()   

  1. 1.浙江理工大学 先进纺织材料与制备技术教育部重点实验室, 浙江 杭州 310018
    2.现代纺织技术创新中心(鉴湖实验室), 浙江 绍兴 312000
    3.浙江灏宇科技有限公司, 浙江 绍兴 312000
  • 收稿日期:2024-03-28 修回日期:2025-01-02 出版日期:2025-04-15 发布日期:2025-06-11
  • 通讯作者: 翟世民(1991—),男,副教授,博士。主要研究方向为固废资源化及印染废水处理。E-mail:zsm021616@163.com
  • 作者简介:金汝诗(1999—),女,硕士生。主要研究方向为固废资源化及印染废水处理。
  • 基金资助:
    浙江理工大学科研启动项目(22202008-Y);浙江省现代纺织技术创新中心定向项目(ZCLTGS24B0701);浙江理工大学优秀博士专项(11150131721905)

Application progress in biochars in printing and dyeing wastewater treatment

JIN Rushi1,2, CHEN Wanming3, LIU Guojin1,2, LIU Chenghai2, QI Dongming1,2, ZHAI Shimin1()   

  1. 1. Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Zhejiang Provincial Innovation Center of Advanced Textile Technology(Jianhu Laboratory), Shaoxing, Zhejiang 312000, China
    3. Zhejiang Haoyu Technology Co., Ltd., Shaoxing, Zhejiang 312000, China
  • Received:2024-03-28 Revised:2025-01-02 Published:2025-04-15 Online:2025-06-11

摘要:

将废弃生物质制备为生物炭,用于印染废水处理,可实现废弃生物质的资源化利用,并降低印染废水的处理成本,应用潜力巨大。为提升生物炭在印染废水处理中的应用性能,以生物炭对印染废水中典型污染物的去除为切入点,总结了生物炭材料在印染废水处理方面的去除机制和最新研究进展。针对当前生物炭产品存在的理化参数差异大、生物炭对印染废水中典型污染物针对性差和生物炭吸附后易产生固废污染等问题,提出建立生物炭产品的制备标准、根据印染废水中污染物特点调节官能团和孔道结构、开发可吸附-脱附的复合生物炭材料等策略,以期为生物炭在印染废水处理中的应用和研究提供借鉴。

关键词: 废弃生物质, 生物炭, 功能改性, 印染废水, 废水处理, 吸附-脱附

Abstract:

Significance Biochar materials were pyrolyzed from waste biomass with little or no oxygen. Due to their large specific surface area, controllable porous structure and stable chemical properties, biochar materials have attracted extensive attention from researchers in the field of agricultural soil remediation, greenhouse gas emission reduction, water pollution control and capacitor preparation. The application of biochars deriving from residual biomass in the printing and dyeing wastewater treatment can not only realize the resource utilization of waste biomass, but also decrease the costs of wastewater treatment. At the same time, the waste biomass utilization and the fixing effects for carbon elements can solve the problem of shortage of fossil resources, and help achieve the goal of “carbon neutrality”. The application of biochar in the treatment of printing and dyeing wastewater fit the idea of green development, which is one of the hot points of current research.

Progress To improve the application performances of biochar in printing and dyeing wastewater treatment, the recent research progress in biochars and their removal mechanism for typical pollutants were reviewed and summarized. The influences of activation-modification process for biochar on the treatment effects and regeneration capacity were discussed. Moreover, to the existing problems (such as the wide difference between biochars, poor pertinence of biochar for typical pollutants in printing and dyeing wastewater, and difficult regeneration of biochar after adsorption), the strategies such as establishing standard for biochar products, modifying biochar through functional group and pore structure, and developing composite biochar materials with adsorption-desorption ability were proposed in this paper.

Conclusion and Prospect The application of biochar prepared from waste biomass in the treatment of printing and dyeing wastewater, as a beneficial supplement to activated carbon, is beneficial for the environmental protection. However, some key problems still persist, such as the wide difference between biochars, poor pertinence of biochar for typical pollutants in printing and dyeing wastewater, and difficult regeneration of biochar after adsorption. How to regulate the adsorption properties of biochars and to achieve low-cost regeneration of biochar after adsorption are the key problems chanllenging large-scale application of biochar in wastewater treatment. From this review, it is hoped to improve the foundamental understanding for application and research of biochar materials in printing and dyeing wastewater treatment.

Key words: waste biomass, biochar, functional modification, printing and dyeing wastewater, wastewater treatment, adsorption-desorption

中图分类号: 

  • TQ325

图1

生物炭吸附机制图 注:pHpzc代表零电荷点。"

图2

生物炭的活化与改性流程图"

表1

生物炭的改性方法、理化性质及其对印染废水中污染物的去除"

改性/活化
方法
原料 热解温
度/℃
比表面积/
(m2·g-1)
最佳处理效
果pH值
目标污
染物
去除量/
(mg·g-1)
去除机制 文献
蒸汽活化 蘑菇底物 800 322.0 6~10 结晶紫 1 057.0 孔隙填充,氢键、
静电相互作用
[25]
KOH活化 软木 750 2 865.0 亚甲基蓝 1 103.7 孔隙填充,静电吸引、
氢键和π-π相互作用
[26]
KOH活化 胶渣 700 860.5 Cr(Ⅵ) [27]
HCl活化 85.9
ZnCl2活化 694.0 325.5 静电相互作用,表面官
能团络合,孔隙填充
H3PO4活化 棉纺废料 500 1 498.0 6~8 亚甲基蓝 240 孔隙填充,π-π相
互作用,静电吸引
[28]
H3PO4活化 桉树废料 500 1 265.6 Cr(Ⅵ) 235.0 [29]
H3PO4活化+
氮掺杂
1 654.4 2 260.0 孔隙填充、还原
Cr(Ⅵ)、静电吸引
K2CO3活化+
氮参杂
废玉米芯 900 2 745.4 罗丹明B 1 630.7 氢键、静电吸引和
π-π相互作用
[30]
刚果红 1 766.2
NaOH活化+
硫掺杂
平菇废料 500 47.6 7 Cd(Ⅱ) 56.0 离子交换,表面
络合作用
[31]
磷掺杂 竹材 550 156.0 Cd(Ⅱ) 287.0 络合反应,
沉淀反应
[32]
TiO2-Ag负载 竹片 500 51.7 亚甲基蓝 光催化降解 [33]
十二烷基苯磺
酸改性+磁化
木屑粉末 550 506.3 6 罗丹明B 367.7 孔隙填充,静电吸引,
氢键,表面络合,疏
水和π-π相互作用
[34]
月桂酸改性+
磁化
花旗松 / 695.0 石油 3 000~11 000 疏水和π-π
相互作用
[35]
/ 松针 800 1,4-二噁烷 过硫酸盐活化体系 [36]
铁/氮掺杂 麦秆 800 362.5 7 酸性橙 100 过硫酸盐活化体系
CeO2负载 废纸,麦秆 500 59.0 2.5~6.5 活性红84 超声催化体系 [37]
铁掺杂 污泥 1 100 18.9 2~4 环丙沙星 类芬顿体系 [38]
TiO2负载 巨藻 400 亚甲基蓝 74.3 光催化体系 [39]

表2

生物炭的再生方法与再生性能"

生物炭原料 改性方法 再生方法 目标处理物 循环次数 再生效率/% 参考文献
造纸厂污水污泥 蒸汽活化 300 ℃热分解再生 亚甲基蓝 3 85 [48]
美人蕉 热分解再生 [49]
凤尾草 Fe修饰 NaOH作为解吸剂 As(Ⅲ) 5 27 [50]
棉秆 HNO3作为解吸剂 Pb(Ⅱ) 3 85 [51]
椰壳 Fe/N改性 HCl作为解吸剂 罗丹明B [52]
香蕉皮 FeSO4改性 乙醇作为解吸剂 亚甲基蓝 5 75~80 [53]
有机污泥 类芬顿体系 亚甲基蓝 4 88 [54]
废核桃壳 负载TiO2 光催化体系 甲基橙 5 92 [55]
[1] 章耀鹏, 沈忱思, 徐晨烨, 等. 纺织工业典型污染物治理技术回顾[J]. 纺织学报, 2021, 42(8):24-33,40.
ZHANG Yaopeng, SHEN Chensi, XU Chenye, et al. Review on treatment technology for typical pollutants in textile industry[J]. Journal of Textile Research, 2021, 42(8): 24-33,40.
[2] LIU Z C, KHAN T A, ISLAM M A, et al. A review on the treatment of dyes in printing and dyeing wastewater by plant biomass carbon[J]. Bioresource Technology, 2022. DOI: 10.1016/j.biortech.2022.127168.
[3] XIANG W, ZHANG X Y, CHEN J J, et al. Biochar technology in wastewater treatment: a critical review[J]. Chemosphere, 2020. DOI: 10.1016/j.chemosphere.2020.126539.
[4] CHOU C S, CHEN C Y, LIN S H, et al. Preparation of TiO2/bamboo-charcoal-powder composite particles and their applications in dye-sensitized solar cells[J]. Advanced Powder Technology, 2015, 26(3): 711-717.
[5] QIU Z, TANG J W, CHEN J H, et al. Remediation of cadmium-contaminated soil with biochar simultaneously improves biochar's recalcitrance[J]. Environmental Pollution, 2020. DOI: 10.1016/j.envpol.2019.113436.
[6] LUO D, WANG L Y, NAN H Y, et al. Phosphorus adsorption by functionalized biochar: a review[J]. Environmental Chemistry Letters, 2023, 252: 497-524.
[7] 李亚森, 丁松爽, 殷全玉, 等. 多年施用生物炭对河南烤烟种植区土壤呼吸的影响[J]. 环境科学, 2019, 40(2): 915-923.
LI Yasen, DING Songshuang, YIN Quanyu, et al. Effect of long-term biochar application on soil respiration in flue-cured tobacco planting fields in henan province[J]. Environmental Science, 2019, 40(2):915-923.
[8] WU J, YANG J W, HUANG G H, et al. Hydrothermal carbonization synthesis of cassava slag biochar with excellent adsorption performance for Rhodamine B[J]. Journal of Cleaner Production, 2020. DOI: 10.1016/j.jclepro.2019.119717.
[9] PEREZ-RODRIGUEZ S, PINTO O, IZQIERDO M T, et al. Upgrading of pine tannin biochars as electrochemical capacitor electrodes[J]. Journal of Colloid and Interface Science, 2021, 601: 863-876.
[10] 邹俊, 陈应泉, 杨海平, 等. 生物质高值化利用研究综述[J]. 华中科技大学学报(自然科学版), 2022, 50(7):79-88.
ZOU Jun, CHEN Yingquan, YANG Haiping, et al. Review of high value utilization of biomass[J]. Journal of Huazhong University of Science and Techno-logy (Natural Science Edition), 2022, 50(7): 79-88.
[11] YAGUB M T, SEN T K, AFROZE S, et al. Dye and its removal from aqueous solution by adsorption: a review[J]. Advances in Colloid and Interface Science, 2014, 209: 172-184.
doi: 10.1016/j.cis.2014.04.002 pmid: 24780401
[12] APPIAH NTIAMOAH R, TILAHUN K M, MENGESHA D N, et al. Carbonyl-interfaced-biochar derived from unique capillary structures via one-step carbonization with selective methyl blue adsorption capability[J]. Journal of Cleaner Production, 2023.DOI: 10.1016/j.jclepro.2023.137291.
[13] JOSHI P, PROLTA A, MWHTA S, et al. Adsorptive removal of multiple organic dyes from wastewater using regenerative microporous carbon: Decisive role of surface-active sites, charge and size of dye molecules[J]. Chemosphere, 2022. DOI: 10.1016/j.chemosphere.2022.136433.
[14] WU J, YANG J W, FENG P, et al. High-efficiency removal of dyes from wastewater by fully recycling litchi peel biochar[J]. Chemosphere, 2020. DOI: 10.1016/j.chemosphere.2020.126444.
[15] KHAN A A, GUL J, NAQVI S R, et al. Recent progress in microalgae-derived biochar for the treatment of textile industry wastewater[J]. Chemosphere, 2022. DOI: 10.1039/C8RA02258E.
[16] 刘青松, 白国敏. 生物炭及其改性技术修复土壤重金属污染研究进展[J]. 应用化工, 2022, 11: 3285-3291.
LIU Qingsong, BAI Guomin. Research progress of biochar and its modification technology for remediation of heavy metal pollution in soil[J]. Applied Chemical Industry, 2022, 11: 3285-3291.
[17] 赵建兵, 朱俊波, 庄长福, 等. 玉米秸秆生物炭对水中铅、镉的去除性能及作用机理研究[J]. 生物质化学工程, 2022, 56(4):15-24.
doi: 10.3969/j.issn.1673-5854.2022.04.003
ZHAO Jianbing, ZHU Junbo, ZHUANG Changfu, et al. Removal Performance and mechanism of lead and cadmium in corn straw biochar[J]. Biomass Chemical Engineering, 2022, 56(4):15-24.
doi: 10.3969/j.issn.1673-5854.2022.04.003
[18] ZHANG H, LI R H, ZHANG Z Q. A versatile EDTA and chitosan bi-functionalized magnetic bamboo biochar for simultaneous removal of methyl orange and heavy metals from complex wastewater[J]. Environmental Pollution, 2022. DOI: 10.1016/j.envpol.2021.118517.
[19] 刘旭峰. 表面活性剂产品在纺织工业中的各类应用[J]. 网印工业, 2020, 10: 48-50.
LIU Xufeng. Various applications of surfactant products in the textile industry[J]. Screen Printing Industry, 2020, 10: 48-50.
[20] VERMA A K, DASH A K, BHUNIA P, et al. Removal of surfactants in greywater using low-cost natural adsorbents: a review[J]. Surfaces and Interfaces, 2021. DOI: 10.1016/j.surfin.2021.101532.
[21] VALIZADEH S, YOUNESI H, BAHRAMIFAR N. Highly mesoporous K2CO3 and KOH/activated carbon for SDBS removal from water samples: batch and fixed-bed column adsorption process[J]. Environmental Nanotechnology, Monitoring & Management, 2016. DOI: 10.1016/j.enmm.2016.06.005.
[22] CHENG H Y, CHENG B H, SHEN X C, et al. Spectroscopic investigation reveals the interference mechanism of surfactants on the removal of 1-naphthol by activated biochar[J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 4196-4205.
[23] 张玉梅. 涤纶短纤维环保油剂的开发与应用[J]. 合成纤维, 2017, 46(11):37-40.
ZHANG Yumei. Development and application of environmental protection oil agent for polyester staple fiber[J]. Synthetic Fiber, 2017, 46(11):37-40.
[24] SOHAIMI K S A, NGADI N, MAT H, et al. Synthesis, characterization and application of textile sludge biochars for oil removal[J]. Journal of Environmental Chemical Engineering, 2017, 5(2): 1415-1422.
[25] SEWU D D, JUNG H, KIM S S, et al. Decolorization of cationic and anionic dye-laden wastewater by steam-activated biochar produced at an industrial-scale from spent mushroom substrate[J]. Bioresource Technology, 2019, 277: 77-86.
doi: S0960-8524(19)30045-8 pmid: 30660064
[26] WANG Q, LAI Z, LUO C, et al. Honeycomb-like activated carbon with microporous nanosheets structure prepared from waste biomass cork for highly efficient dye wastewater treatment[J]. Journal of Hazardous Materials, 2021.DOI: 10.1016/j.jhazmat.2021.125896.
[27] SHI Y, SHAN R, LU L, et al. High-efficiency removal of Cr (VI) by modified biochar derived from glue residue[J]. Journal of Cleaner Production, 2019. DOI: 10.1016/j.jclepro.2019.119935.
[28] KAR S, SANTRA B, KUMAR S, et al. Sustainable conversion of textile industry cotton waste into P-dopped biochar for removal of dyes from textile effluent and valorisation of spent biochar into soil conditioner towards circular economy[J]. Environmental Pollution, 2022. DOI: 10.1016/j.envpol.2022.120056.
[29] LU Z, ZHANG H, SHAHAB A, et al. Comparative study on characterization and adsorption properties of phosphoric acid activated biochar and nitrogen-containing modified biochar employing eucalyptus as a precursor[J]. Journal of Cleaner Production, 2021. DOI: 10.1016/J.JCLEPRO.2021.127046.
[30] WANG L, LI H, LI M, et al. Trace nitrogen-doped hierarchical porous biochar nanospheres: waste corn roots derived superior adsorbents for high concentration single and mixed organic dyes removal[J]. Nano Research, 2023, 16(2): 1846-1858.
[31] LIU M Y, LIU X S, WU Z M, et al. Sulfur-modified Pleurotus ostreatus spent substrate biochar enhances the removal of cadmium in aqueous solution: Characterization, performance, mechanism[J]. Journal of Environmental Management, 2022. DOI: 10.1016/j.jenvman.2022.115900.
[32] ZHANG H, LIAO W, ZHOU X M, et al. Coeffect of pyrolysis temperature and potassium phosphate impregnation on characteristics, stability, and adsorption mechanism of phosphorus-enriched biochar[J]. Bioresource Technology, 2022. DOI: 10.1016/j.biortech.2021.126273.
[33] ZHAI S M, LI M, WANG D, et al. Fabrication of hollow-catalytic microspheres (HCMs) with double-sided materials and their application on wastewater treatment[J]. Journal of Cleaner Production, 2020. DOI: 10.1016/j.jclepro.2020.119956.
[34] LI X, XU J, LUO X, et al. Efficient adsorption of dyes from aqueous solution using a novel functionalized magnetic biochar: synthesis, kinetics, isotherms, adsorption mechanism, and reusability[J]. Bioresource Technology, 2022. DOI: 10.1016/j.biortech.2022.127526.
[35] NAVARATHNA C M, BOMBUWALA DEWAGE N, Keeton C, et al. Biochar adsorbents with enhanced hydrophobicity for oil spill removal[J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9248-9260.
[36] OUYANG D, CHEN Y, YAN J C, et al. Activation mechanism of peroxymonosulfate by biochar for catalytic degradation of 1, 4-dioxane: important role of biochar defect structures[J]. Chemical Engineering Journal, 2019, 370: 614-624.
[37] LI X, JIA Y, ZHOU M H, et al. High-efficiency degradation of organic pollutants with Fe, N co-doped biochar catalysts via persulfate activation[J]. Journal of Hazardous Materials, 2020. DOI: 10.1016/j.jhazmat.2020.122764.
[38] LI J, PAN L J, YU G W, et al. The synthesis of heterogeneous Fenton-like catalyst using sewage sludge biochar and its application for ciprofloxacin degra-dation[J]. Science of the Total Environment, 2019, 654: 1284-1292.
[39] KHATAEE A, GHOLAMI P, KALDERIS D, et al. Preparation of novel CeO2-biochar nanocomposite for sonocatalytic degradation of a textile dye[J]. Ultrasonics Sonochemistry, 2018, 41: 503-513.
[40] CHI N T L, ANTO S, AHAMED T S, et al. A review on biochar production techniques and biochar based catalyst for biofuel production from algae[J]. Fuel, 2021. DOI: 10.1016/j.fuel.2020.119411.
[41] CHEN Y Q, ZHANG X, CHEN W, et al. The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption perfor-mance[J]. Bioresource Technology, 2017, 246: 101-109.
[42] GAO Y, YUE Q Y, GAO B Y, et al. Insight into activated carbon from different kinds of chemical activating agents: a review[J]. Science of the Total Environment, 2020. DOI: 10.1016/j.scitotenv.2020.141094.
[43] LENG L J, XU S Y, LIU R F, et al. Nitrogen containing functional groups of biochar: an overview[J]. Bioresource Technology, 2019. DOI: 10.1016/j.biortech.2019.122286.
[44] LENG L J, LIU R F, XU S Y, et al. An overview of sulfur-functional groups in biochar from pyrolysis of biomass[J]. Journal of Environmental Chemical Engineering, 2022. DOI: 10.1016/j.jece.2022.107185.
[45] FAZAL T, RAZZAQ A, JAVED F, et al. Integrating adsorption and photocatalysis: a cost-effective strategy for textile wastewater treatment using hybrid biochar-TiO2 composite[J]. Journal of Hazardous Materials, 2020. DOI: 10.1016/j.jhazmat.2019.121623.
[46] HERATH A, LAYNE C A, PEREZ F, et al. KOH-activated high surface area douglas fir biochar for adsorbing aqueous Cr (VI), Pb (II) and Cd (II)[J]. Chemosphere, 2021. DOI: 10.1016/j.chemosphere.2020.128409.
[47] ALSAWY T, RASHAD E, ELQELISH M, et al. A comprehensive review on the chemical regeneration of biochar adsorbent for sustainable wastewater treat-ment[J]. NPJ Clean Water, 2022, 5(1): 1-21.
[48] LI W H, YUE Q Y, GAO B Y, et al. Preparation and utilization of sludge-based activated carbon for the adsorption of dyes from aqueous solutions[J]. Chemical Engineering Journal, 2011, 171(1): 320-327.
[49] CUI X, WANG J, WANG X, et al. Pyrolysis of exhausted hydrochar sorbent for cadmium separation and biochar regeneration[J]. Chemosphere, 2022. DOI: 10.1016/j.chemosphere.2022.135546.
[50] FENG M, ZHANG X, FU Q, et al. Renewable and efficient removal of arsenic from contaminated water by modified biochars derived from as-enriched plant[J]. Bioresource Technology, 2023. DOI: 10.1016/j.biortech.2023.129680.
[51] GAO L, LI Z, YI W, et al. Impacts of pyrolysis temperature on lead adsorption by cotton stalk-derived biochar and related mechanisms[J]. Journal of Environmental Chemical Engineering, 2021. DOI: 10.1016/j.jece.2021.105602.
[52] LI X, SHI J, LUO X. Enhanced adsorption of rhodamine B from water by Fe-N co-modified biochar: Preparation, performance, mechanism and reus-ability[J]. Bioresource Technology, 2022. DOI: 10.1016/j.biortech.2021.126103.
[53] ZHANG P, O'CONNOR D, WANG Y N, et al. A green biochar/iron oxide composite for methylene blue removal[J]. Journal of Hazardous Materials, 2020. DOI: 10.1016/j.jhazmat.2019.121286.
[54] YE G R, ZHOU J H, HUANG R T, et al. Magnetic sludge-based biochar derived from Fenton sludge as an efficient heterogeneous Fenton catalyst for degrading Methylene blue[J]. Journal of Environmental Chemical Engineering, 2022. DOI: 10.1016/j.jece.2022.107242.
[55] LU L L, SHAN R, SHI Y Y, et al. A novel TiO2/biochar composite catalysts for photocatalytic degradation of methyl orange[J]. Chemosphere, 2019, 222: 391-398.
[56] OMOROGIE M O, BABALOLA J O, UNUABONAH E I. Regeneration strategies for spent solid matrices used in adsorption of organic pollutants from surface water: a critical review[J]. Desalination and Water Treatment, 2016, 57(2): 518-544.
[57] FEI Y, LI M, YE Z, et al. The pH-sensitive sorption governed reduction of Cr (VI) by sludge derived biochar and the accelerating effect of organic acids[J]. Journal of Hazardous Materials, 2022. DOI: 10.1016/j.jhazmat.2021.127205.
[1] 李逢春, 孙辉, 于斌, 谢有秀, 张德伟. 共价有机框架材料/粘胶水刺非织造布的制备及其染料吸附性能[J]. 纺织学报, 2025, 46(02): 170-179.
[2] 杨亮, 孔韩韩, 李韦霖, 祁小芬, 张天芸, 王雪梅, 李文全. 沸石咪唑酯骨架-8的制备及其对刚果红的吸附性能[J]. 纺织学报, 2024, 45(07): 140-149.
[3] 武守营, 黄启超, 张开封, 张琳萍, 钟毅, 徐红, 毛志平. 铁-三联吡啶配合物活化高碘酸盐体系构建及其对染色废水的催化降解机制[J]. 纺织学报, 2024, 45(06): 105-112.
[4] 冯颖, 于汉哲, 张宏, 李可心, 马标, 董鑫, 张建伟. 静电纺壳聚糖基纳米纤维的制备及其在水处理中应用研究进展[J]. 纺织学报, 2024, 45(05): 218-227.
[5] 郑康, 龚文丽, 鲍杰, 刘琳. 两性纤维素多孔凝胶球的制备及其动态吸附性能[J]. 纺织学报, 2024, 45(05): 102-112.
[6] 陆瑶瑶, 叶俊涛, 阮承祥, 娄瑾. 二氧化钛/多孔碳纳米纤维复合材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(04): 67-75.
[7] 李方, 张怡立, 王曼, 孟祥周, 沈忱思. 锑污染物对绿藻及蓝藻的急性毒性效应[J]. 纺织学报, 2024, 45(04): 169-179.
[8] 陈荣轩, 孙辉, 于斌. N-TiO2/聚丙烯复合熔喷非织造材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(03): 137-147.
[9] 黄彪, 郑莉娜, 秦妍, 程羽君, 李成才, 朱海霖, 刘国金. 多孔型TiO2微粒的制备及其对离子型染料的吸附[J]. 纺织学报, 2023, 44(11): 167-175.
[10] 李红颖, 徐毅, 杨帆, 任瑞鹏, 周全, 吴丽杰, 吕永康. 三维乒乓菊状CdS/BiOBr催化剂的制备及其光催化降解罗丹明B[J]. 纺织学报, 2023, 44(09): 124-133.
[11] 李璟孜, 娄蒙蒙, 黄世燕, 李方. 基于光热利用的金属有机骨架/石墨烯复合膜对印染废水的再生处理[J]. 纺织学报, 2023, 44(09): 116-123.
[12] 王宸杨, 贾洁, 李发学. β-环糊精基金属有机框架材料的制备及其对重金属离子的吸附[J]. 纺织学报, 2023, 44(08): 158-166.
[13] 韩博, 王玉霖, 舒大武, 王涛, 安芳芳, 单巨川. 活性染料染色废水的循环染色[J]. 纺织学报, 2023, 44(08): 151-157.
[14] 王国琴, 付小航, 朱羽科, 吴礼光, 王挺, 蒋孝佳, 陈华丽. 可见光响应的介孔TiO2光降解罗丹明B机制及其降解途径[J]. 纺织学报, 2023, 44(05): 155-163.
[15] 李方, 潘航, 章耀鹏, 马慧婕, 沈忱思. 印染废水中聚乙烯醇浆料的高效去除及六价铬的协同还原[J]. 纺织学报, 2023, 44(03): 147-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!