纺织学报 ›› 2023, Vol. 44 ›› Issue (08): 151-157.doi: 10.13475/j.fzxb.20220803001

• 染整与化学品 • 上一篇    下一篇

活性染料染色废水的循环染色

韩博1, 王玉霖2, 舒大武1,2,3(), 王涛1, 安芳芳1, 单巨川1   

  1. 1.河北科技大学 纺织服装学院, 河北 石家庄 050018
    2.淄博墨林汇新材料有限公司, 山东 淄博 255000
    3.河北省应急防护面料产业研究院, 河北 邢台 055550
  • 收稿日期:2022-08-11 修回日期:2023-03-11 出版日期:2023-08-15 发布日期:2023-09-21
  • 通讯作者: 舒大武(1987—),男,博士。主要研究方向为纺织品清洁染整加工。E-mail:shudawu@126.com
  • 作者简介:韩博(2001—),男,硕士生。主要研究方向为纺织品清洁染整加工。
  • 基金资助:
    河北省青年科学基金项目(B2020208061);河北省教育厅基金项目(QN2023090)

Reactive dyeing using recycled dyeing wastewater

HAN Bo1, WANG Yulin2, SHU Dawu1,2,3(), WANG Tao1, AN Fangfang1, SHAN Juchuan1   

  1. 1. College of Textile and Garments, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
    2. Zibo Molinhui New Material Co., Ltd., Zibo, Shandong 255000, China
    3. Hebei Emergency Protective Fabric Industrial Technology Research Institute, Xingtai, Hebei 055550, China
  • Received:2022-08-11 Revised:2023-03-11 Published:2023-08-15 Online:2023-09-21

摘要:

针对活性染料染色工艺流程长,能耗水耗高和有色废水排放量大等问题,使用有色废水处理剂对活性染料染色织物进行低温快速皂洗并实现循环染色。以模拟废水和染液为研究对象,脱色率为评价指标,探究了染色废水处理工艺。通过测试染料竭染率、固色率和染色织物部分颜色参数证实了染色废水循环染色的可行性。结果表明:0.07 g/L的C.I.活性红218模拟废水适宜的处理条件是3%废水处理剂,85 ℃处理15 min,在此条件下染色废水脱色率高达99.1%;与常规染色相比,利用处理后的废水进行循环染色,可提高活性染料上染百分率,染色织物颜色偏深;染色时,染料上染百分率和固色率随循环次数增加呈现增大的趋势。使用该方式染色既能实现有色废水高效处理,又能实现无机盐重复利用,符合低碳环保要求。

关键词: 活性染料, 循环染色, 废水处理, 脱色率, 节能减排

Abstract:

Objective Reactive dyeing is known for its complex dyeing process, high energy and water consumption, and large discharge of colored wastewater, which seriously restricts the transformation and upgrading of the printing process. As an effort to reach "emission peak and carbon neutrality", the development of reactive dye cyclic dyeing with energy saving and emission reduction advantages is conducive to promoting the green and low-carbon production in the printing and dyeing industry.

Method The treatment agent contains compounds with bleaching and oxidizing functions. This wastewater treatment agent was selected for dyeing fabric soaping, realizing the low temperature fast soaping of dyeing fabric and recycling of dyeing wastewater. Taking a type of simulated wastewater as the research object and absorbance as the evaluation index, the treatment and reuse process of wastewater was explored. The feasibility of cyclic dyeing was verified by the determination of dye exhaustion rate, fixation rate and color parameters of dyed fabric.

Results The results showed that the decolorization rate of dye solution increased with the increase of temperature, and the higher the temperature the shorter the treatment time (Fig. 2). Under the same treatment time, the higher the treatment agent concentration, the higher the decolorization rate of dye solution, indicating that increasing the concentration of treatment agent was conducive to reducing the number of dye molecules in the waste liquid. In addition, it was found that the same effect could be achieved by prolonging the treatment time when the concentration of treatment agent was low (Fig. 3). When the treatment time was 5 min, the decolorization rate of dye solution with 20 g/L of NaCl was up to 64.7%, which was 21.9% higher than that of without NaCl. Further increasing NaCl concentration to 50 g/L had no significant effect on the decolorization rate of dye solution. Further extending the treatment time to 30 min, NaCl showed little effect on decolorization rate of dye solution (Fig. 6). After treatment at 85 ℃ for 15 min, the maximum absorption wavelength in the visible region disappeared, and the decolorization rate of the dye solution was as high as 99.1% (Fig. 7). When the reactive dye was dyed with recycled water, the dye percentage in the first 30 min was 9.0%-13.9% higher than that of the deionized water at the same time. Increasing the number of dyeing cycles did not change the overall trend of dyeing rate curve (Fig. 8). Compared with the color parameters of the fabric dyed by deionized water, the color of the fabric dyed by cycle was darker, the red and blue light were weakened (Tab. 1).

Conclusion The treatment agent of 3%, the temperature of 85 ℃ and the time of 15 min were appropriate for dealing with 0.07 g/L of C.I. Reactive Red 218 simulated wastewater. The decolorization rate of dyeing wastewater is up to 99.1% after 15 min treatment. Under the same treatment process, the acid condition has the best treatment effect, the neutral condition is the next, and the alkaline condition is the worst. Compared with deionized water, the percentage of reactive dye increased with the extension of dyeing time. During cyclic dyeing, reactive dyes have higher dye exhaustion and fixation rate, and the dyed fabric is darker, and the red and blue light are weakened. This method not only realizes the efficient treatment of dyeing wastewater, but also realizes the reuse of inorganic salts in dyeing residue, which is conducive to energy saving and emission reduction.

Key words: reactive dye, cyclic dyeing, wastewater treatment, decolorization rate, energy saving and emission reduction

中图分类号: 

  • TS193.5

图1

染色工艺"

图2

不同温度处理有色废水的脱色率"

图3

不同质量分数处理剂处理有色废水的脱色率"

图4

不同质量分数处理剂处理的有色废水实物照片"

图5

不同pH值处理有色废水的脱色率"

图6

处理不同浓度NaCl有色废水的脱色率"

图7

处理时间对染液紫外-可见吸收光谱曲线的影响"

图8

循环次数对活性染料上染百分率的影响"

表1

织物颜色参数、活性染料竭染率和固色率"

循环
次数
颜色参数 竭染
率/%
固色
率/%
L* a* b* K/S
0 58.7 47.4 -13.8 2.6 64.6 60.3
1 54.5 44.2 -8.3 3.2 67.1 62.9
5 54.5 44.4 -8.4 3.3 73.9 69.8
9 54.1 45.8 -8.4 3.5 74.9 71.1
[1] SHU D W, FANG K J, LIU X M, et al. Cleaner coloration of cotton fabric with reactive dyes using a pad-batch-steam dyeing process[J]. Journal of Cleaner Production, 2018, 196:935-942.
doi: 10.1016/j.jclepro.2018.06.080
[2] KHATRI A, PEERZADA M, MOHSIN M, et al. A review on developments in dyeing cotton fabrics with reactive dyes for reducing effluent pollution[J]. Journal of Cleaner Production, 2015, 87: 50-57.
doi: 10.1016/j.jclepro.2014.09.017
[3] 舒大武, 房宽峻, 刘秀明, 等. 活性染料无盐连续轧-蒸与冷轧堆染色效果的比较[J]. 纺织学报, 2018, 39(4): 77-81.
SHU Dawu, FANG Kuanjun, LIU Xiuming, et al. Comparison on dyeing effect of reactive dyes by salt-free continuous pad-steam dyeing and cold pad-batch dyeing[J]. Journal of Textile Research, 2018, 39(4): 77-81.
[4] 裴刘军, 施文华, 张红娟, 等. 非水介质活性染料染色关键技术体系及其产业化研究进展[J]. 纺织学报, 2022, 43(1): 122-130.
PEI Liujun, SHI Wenhua, ZHANG Hongjuan, et al. Research progress on dyeing key technology system and industrialization of non-aqueous reactive dyes[J]. Journal of Textile Research, 2022, 43(1): 122-130.
[5] 韩莹莹, 孙丽静, 钟毅, 等. 活性染料Pickering乳液非均相浸渍染色[J]. 纺织学报, 2017, 38(11): 79-83.
HAN Yingying, SUN Lijing, ZHONG Yi, et al. Reactive dye Pickering lotion heterogeneous impregnation dyeing[J]. Journal of Textile Research, 2017, 38 (11): 79-83.
[6] 孔舒宸. 印染废水处理方法研究进展[J]. 中国资源综合利用, 2019, 37(1): 70-73.
KONG Shuchen. Research progress of dyeing wastewater treatment methods[J]. China Resources Comprehensive Utilization, 2019, 37(1): 70-73.
[7] 董殿波. 印染废水处理技术研究进展[J]. 染料与染色, 2015, 52(4): 56-62.
DONG Dianbo. Research progress of dyeing wastewater treatment technology[J]. Dyestuffs and Coloration, 2015, 52(4): 56-62.
[8] ZHANG M, CHEN X, XU H, et al. Advanced treatment of printing and dyeing wastewater by activated coke and thermal regeneration of spent activated coke[J]. Desalination and Water Treatment, 2021, 229: 421-429.
doi: 10.5004/dwt
[9] 兰慧芳, 邹专勇, 朱卫红, 等. 颗粒活性炭对模拟活性染料废水的吸附脱色效果[J]. 纺织学报, 2013, 34(5): 70-75.
LAN Huifang, ZOU Zhuanyong, ZHU Weihong, et al. Adsorption and decolorization of simulated reactive dye wastewater by granular activated carbon[J]. Journal of Textile Research, 2013, 34(5): 70-75.
[10] 翟佳. 活性染料印染废水处理工艺研究[J]. 绿色环保建材, 2021(12): 33-34.
ZHAI Jia. Research on the treatment process of reactive dye dyeing wastewater[J]. Green Environmental Protection Building Materials, 2021(12): 33-34.
[11] 刘晓芸, 姚庆才, 陈小利, 等. 活性染料染色残液的循环利用[J]. 印染, 2017, 43(13): 29-32,35.
LIU Xiaoyun, YAO Qingcai, CHEN Xiaoli, et al. Recycling of dyeing residue of reactive dyes[J]. China Dyeing & Finishing, 2017, 43(13): 29-32,35.
[12] 何华玲, 张健飞, 于志财, 等. 阳离子淀粉-膨润土复合絮凝剂对活性染料的吸附[J]. 纺织学报, 2014, 35(7): 101-106.
HE Hualing, ZHANG Jianfei, YU Zhicai, et al. Adsorption of reactive dyes by cationic starch-bentonite composite flocculant[J]. Journal of Textile Research, 2014, 35(7): 101-106.
[13] 王志刚, 崔双科, 王丽贤, 等. 纳米TiO2-PASS复合絮凝剂处理染料废水[J]. 印染, 2014, 40(14): 17-21,34.
WANG Zhigang, CUI Shuangke, WANG Lixian, et al. Treatment of dye wastewater with nano TiO2-Pass composite flocculant[J]. China Dyeing & Finishing, 2014, 40(14): 17-21,34.
[14] 桂澄, 贾凡, 王赏, 等. 萃取法处理模拟活性染料废水[J]. 印染, 2018, 44(18): 40-44.
GUI Cheng, JIA Fan, WANG Shang, et al. Treatment of simulated reactive dye wastewater by extraction[J]. China Dyeing & Finishing, 2018, 44(18): 40-44.
[15] MCYOTTOA F, WEI Q, MACHARIA D, et al. Effect of dye structure on color removal efficiency by coagulation[J]. Chemical Engineering Journal, 2021. DOI: 10.1016/j.cej.2020.126674.
doi: 10.1016/j.cej.2020.126674
[16] 舒大武, 房宽峻, 刘秀明, 等. 织物升温速率对活性染料轧-蒸无盐染色的影响[J]. 纺织学报, 2018, 39(2): 106-111.
SHU Dawu, FANG Kuanjun, LIU Xiuming, et al. Influence of fabric heating rate on salt-free pad-steam dyeing of reactive dye[J]. Journal of Textile Research, 2018, 39(2): 106-111.
[1] 李红颖, 徐毅, 杨帆, 任瑞鹏, 周全, 吴丽杰, 吕永康. 三维乒乓菊状CdS/BiOBr催化剂的制备及其光催化降解罗丹明B[J]. 纺织学报, 2023, 44(09): 124-133.
[2] 郭玉秋, 钟毅, 徐红, 毛志平. 拼混活性染料染色多组分定量分析方法[J]. 纺织学报, 2023, 44(07): 141-150.
[3] 吴伟, 纪柏林, 毛志平. 活性及分散染料染色新技术[J]. 纺织学报, 2023, 44(05): 1-12.
[4] 王国琴, 付小航, 朱羽科, 吴礼光, 王挺, 蒋孝佳, 陈华丽. 可见光响应的介孔TiO2光降解罗丹明B机制及其降解途径[J]. 纺织学报, 2023, 44(05): 155-163.
[5] 艾丽, 朱亚伟. 液体分散染料研发技术现状及其应用前景[J]. 纺织学报, 2023, 44(05): 220-227.
[6] 齐浩彤, 张林森, 侯秀良, 徐荷澜. 废食用油-水无盐体系活性染色棉织物的服用性能[J]. 纺织学报, 2023, 44(03): 126-131.
[7] 王金坤, 刘秀明, 房宽峻, 乔曦冉, 张帅, 刘冬冬. 双乙烯砜基团活性染料染色对棉织物防皱性能的提升[J]. 纺织学报, 2023, 44(02): 207-213.
[8] 张帅, 房宽峻, 刘秀明, 乔曦冉. 活性染料结构对彩色聚合物纳米球性能的影响[J]. 纺织学报, 2022, 43(12): 96-101.
[9] 乔曦冉, 房宽峻, 刘秀明, 巩继贤, 张帅, 张敏. 羟乙基甲基纤维素改性对棉和锦纶织物表面性质的差异性影响[J]. 纺织学报, 2022, 43(11): 127-132.
[10] 邵敏, 王丽君, 李美琪, 刘今强, 邵建中. 非水介质-微水体系中活性染料的水解和键合性能[J]. 纺织学报, 2022, 43(11): 94-103.
[11] 郑琳娟, 郁佳, 尹冲, 梁志结, 毛庆辉. 多酸基金属-有机框架负载棉织物的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 106-111.
[12] 周小桔, 胡正龙, 任一鸣, 谢兰东. Bi2MoO6修饰TiO2复合纳米棒阵列光催化剂的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 97-105.
[13] 杨丽, 王涛, 石现兵, 韩振邦. 改性聚丙烯腈纤维负载MoSx/TiO2光催化材料制备及其降解染料性能[J]. 纺织学报, 2022, 43(09): 149-155.
[14] 王静, 娄娅娅, 王春梅. 铁基金属–有机框架材料/活性碳纤维复合材料的制备及其对染料的脱色[J]. 纺织学报, 2022, 43(08): 126-131.
[15] 杨文博, 张傲洁, 刘幽燕, 李青云. 聚氨酯泡沫固定化生物体系对活性蓝4的吸附脱色[J]. 纺织学报, 2022, 43(08): 132-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!