纺织学报 ›› 2022, Vol. 43 ›› Issue (10): 106-111.doi: 10.13475/j.fzxb.20210704006

• 染整与化学品 • 上一篇    下一篇

多酸基金属-有机框架负载棉织物的制备及其光催化性能

郑琳娟1, 郁佳1, 尹冲2, 梁志结1, 毛庆辉1()   

  1. 1.南通大学 纺织服装学院, 江苏 南通 226019
    2.南通海盟实业股份有限公司, 江苏 南通 226000
  • 收稿日期:2021-07-14 修回日期:2022-04-21 出版日期:2022-10-15 发布日期:2022-10-28
  • 通讯作者: 毛庆辉
  • 作者简介:郑琳娟(1997—),女,硕士生。主要研究方向为生态染整新技术。
  • 基金资助:
    南通市科技计划项目(JC2020086);南通市科技计划项目(JC2020126)

Preparation and photocatalytic properties of cotton fabrics loaded with polymetallic organic framework material

ZHENG Linjuan1, YU Jia1, YIN Chong2, LIANG Zhijie1, MAO Qinghui1()   

  1. 1. School of Textile and Clothing, Nantong University, Nantong, Jiangsu 226019, China
    2. Nantong Hymo Industrial Co., Ltd., Nantong, Jiangsu 226000, China
  • Received:2021-07-14 Revised:2022-04-21 Published:2022-10-15 Online:2022-10-28
  • Contact: MAO Qinghui

摘要:

为制备具有光催化性能的棉织物,通过引入金属有机框架材料,将尺寸适合的多金属氧酸盐装入其中,从而实现多金属氧酸盐在棉织物上的原位生长。研究了金属离子反应时间、多金属氧酸盐用量、有机配体和多金属氧酸盐的反应时间对制备的负载有多酸基金属-有机框架(POMOF)棉织物光催化性能的影响,借助扫描电子显微镜、傅里叶红外光谱仪等对POMOF负载棉织物的形貌与结构进行表征。结果表明:对棉织物进行羧基化改性,可在其表面形成多的活性位点;当改性棉织物在硝酸铜溶液中反应12 h,均苯三甲酸与多钨酸盐的量比为 1∶14, 有机配体和多酸的反应时间为10 h时,POMOF负载棉织物在135 min内对罗丹明B溶液(10 mg/L)的降解率达92.23%;该POMOF负载棉织物具有良好的光催化性能,在印染废水降解方面有较大潜力。

关键词: 多钨酸盐, 金属-有机框架, 罗丹明B, 光催化降解, 废水处理, 印染废水

Abstract:

To prepare cotton fabrics with photocatalytic properties, the in-situ growth of polyacids on cotton fabrics was achieved by introducing metal organic framework materials into which polymetallic oxides of suitable dimensions were loaded. The effects of metal ion reaction time, amount of polymetallic acid, organic ligand and reaction time of polymetallic acid on the photocatalytic performance of the prepared cotton fabrics loaded with polymetallic organic framework material (POMOF) were investigated, and the morphology and structure of cotton fabrics loaded with POMOF were characterized with the aid of scanning electron microscopy and FT-IR spectrometry. The results show that the carboxylation modification of cotton fabrics is able to form multiple active sites on its surface, and the degradation rate of cotton fabrics loaded with POMOF to Rhodamine B solution (10 mg/L) reached 92.23% in 135 min when the modified cotton fabric was reacted in copper nitrate solution for 12 h, the amount ratio of homophthalic acid to polytungstate was 1∶4, and the reaction time of organic ligand and polyacid was 10 h. This cotton fabric loaded with POMOF demonstrated good photocatalytic performance and has great potential in the degradation of printing and dyeing wastewater.

Key words: polytungstate, metal-organic frame, Rhodamine B, photocatalytic degradation, wastewater treatment, printing and dyeing wastewater

中图分类号: 

  • TS195.5

图1

棉织物羧基改性前后的SEM照片"

图2

不同反应时间下棉织物上铜离子的含量"

图3

POMOF在棉织物上原位生长机制"

表1

多钨酸盐用量对罗丹明B光催化降解率的影响"

有机配体与多
钨酸盐的量比
降解
率/%
有机配体与多
钨酸盐的量比
降解
率/%
1∶10 78.07 1∶14 92.23
1∶11 77.64 1∶15 92.96
1∶12 82.51 1∶16 93.12
1∶13 84.63 1∶17 93.37

图4

多钨酸盐与有机配体反应时间对罗丹明B光催化降解率的影响"

图5

棉织物和POMOF负载棉织物SEM照片"

表2

POMOF负载棉织物的相对元素含量"

元素 质量分数 原子分数
C 57.2 0.2
O 26.7 0.2
Cu 9.0 0.1
W 7.1 0.3
P 0.0 0.2

图6

棉织物、羧基改性棉织物与POMOF负载棉织物的红外光谱"

图7

光照时间对罗丹明B降解率的影响"

图8

光催化前后POMOF负载棉织物的扫描电镜照片"

[1] SABARINATHAN C, KARUPPASAMY P, VIJAYAKUMAR C T, et al. Development of methylene blue removal methodology by adsorption using molecular polyoxometalate: kinetics, thermodynamics and mechanistic study[J]. Microchemical Journal, 2019, 146: 315-326.
doi: 10.1016/j.microc.2019.01.015
[2] KOOHI S R, ALLAHYARI S, KAHFOROOSHAN D, et al. Natural minerals as support of silicotungstic acid for photocatalytic degradation of methylene blue in wastewater[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29(2): 365-377.
doi: 10.1007/s10904-018-1007-4
[3] WANG M, ZHANG M, ZHANG M, et al. In-situ mineralized robust polysiloxane-Ag@ZnO on cotton for enhanced photocatalytic and antibacterial activities[J]. Carbohydrate Polymers, 2019, 217: 15-25.
doi: S0144-8617(19)30435-7 pmid: 31079671
[4] BUTLER A, WALKER J. Marine haloperoxidases[J]. Chemical Reviews, 1993, 93(5): 1937-1944.
doi: 10.1021/cr00021a014
[5] BUTLER A, CLAGUE M, MEISTER G. Vanadium peroxide complexes[J]. Chemical Reviews, 1994, 94(3): 625-638.
doi: 10.1021/cr00027a004
[6] 郁佳, 郑琳娟, 张莉, 等. 缺位型多钼酸盐改性棉织物的制备及抗紫外性能[J]. 印染助剂, 2020, 37(11): 25-28.
YU Jia, ZHENG Linjuan, ZHANG Li, et al. Preparation and UV resistance of cotton fabric modified by polymolybdate[J]. Textile Auxiliaries, 2020, 37(11):25-28.
[7] 张莉, 郁佳, 尹冲, 等. 多钒酸盐基棉织物的制备及光催化性能研究[J]. 棉纺织技术, 2022, 50(3): 39-43.
ZHANG LI, YU Jia, YIN Chong, et al. Preparation and photocatalytic properties of polyvanadate based cotton fabric[J]. Cotton Textile Technology, 2022, 50(3):39-43.
[8] CHUI S, LO S, CHARMANT J, et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n[J]. Science, 1999, 283(5405): 1148-1150.
pmid: 10024237
[9] GETZSCHMANN J, SENKOVSKA I, WALLACHER D, et al. Methane storage mechanism in the metal-organic framework Cu3(BTC)2: an in situ neutron diffraction study[J]. Microporous and Mesoporous Materials, 2010, 136(1): 50-58.
doi: 10.1016/j.micromeso.2010.07.020
[10] KÜSGENS P, SIEGLE S, KASKEL S. Crystal growth of the metal-organic framework Cu3(BTC)2on the surface of pulp fibers[J]. Advanced Engineering Materials, 2009, 11(1/2): 93-95.
doi: 10.1002/adem.200800274
[11] PINTO M, SIERRA-AVILA C, HINESTROZA J. In situ synthesis of a Cu-BTC metal-organic frame-work (MOF 199) onto cellulosic fibrous substrates: cotton[J]. Cellulose, 2012, 19(5): 1771-1779.
doi: 10.1007/s10570-012-9752-y
[12] 白晓贺, 荣莎莎. 碘量法测定铜含量的应用研究[J]. 江西化工, 2020, 36(5): 15-17.
BAI Xiaohe, RONG Shasha. Application study on the determination of copper content by iodimetry[J]. Jiangxi Chemical, 2020, 36(5): 15-17.
[13] 王晓燕, 张瑞萍, 黄娟华, 等. 柠檬酸交联棉织物的纳米二氧化钛功能整理[J]. 印染, 2014, 40(24): 7-13.
WANG Xiaoyan, ZHANG Ruiping, HUANG Juanhua, et al. Functional finishing of citric acid cross-linked cotton fabric with nano titanium dioxide[J]. China Dyeing & Finishing, 2014, 40(24): 7-13.
[14] 王恩波, 胡长林, 许林. 多酸化学导论[M]. 北京: 化学工业出版社, 1998: 152.
WANG Enbo, HU Changlin, XU Lin. Introduction to polyacidification[M]. Beijing: Chemical Industry Press, 1998: 152.
[15] 李鹏熙, 陈庆淬, 杨玲玲, 等. 磷钨酸/SiC复合材料的制备及光催化性能研究[J]. 水处理技术, 2021, 47(3): 63-67.
LI Pengxi, CHEN Qingcui, YANG Lingling, et al. Preparation and photocatalytic performance of phosphotungstic acid/SiC composites[J]. Water Treatment Technology, 2021, 47(3): 63-67.
[16] 李庆, 张莹, 樊增禄, 等. Cu-有机骨架对染料废水的吸附和可见光降解[J]. 纺织学报, 2018, 39(2): 112-118.
LI Qing, ZHANG Ying, FAN Zenglu, et al. Adsorption and visible light degradation of dye wastewater by Cu-organic framework[J]. Journal of Textile Research, 2018, 39(2):112-118.
[1] 冯艳, 李亮, 刘淑萍, 李淑静, 刘让同. 氮碳量子点/二氧化钛复合整理粘胶织物光催化协同构效[J]. 纺织学报, 2022, 43(10): 112-118.
[2] 周小桔, 胡正龙, 任一鸣, 谢兰东. Bi2MoO6修饰TiO2复合纳米棒阵列光催化剂的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 97-105.
[3] 杨丽, 王涛, 石现兵, 韩振邦. 改性聚丙烯腈纤维负载MoSx/TiO2光催化材料制备及其降解染料性能[J]. 纺织学报, 2022, 43(09): 149-155.
[4] 王双双, 季志浩, 盛国栋, 金恩琪. 零价铁/氧化石墨烯复合吸附剂对染料和重金属的吸附性能[J]. 纺织学报, 2022, 43(09): 156-166.
[5] 王静, 娄娅娅, 王春梅. 铁基金属–有机框架材料/活性碳纤维复合材料的制备及其对染料的脱色[J]. 纺织学报, 2022, 43(08): 126-131.
[6] 张雅宁, 张辉, 宋悦悦, 李文明, 李雯君, 姚佳乐. 废弃口罩基ZIF-8/Ag/TiO2复合材料的制备及其光催化降解染料性能[J]. 纺织学报, 2022, 43(07): 111-120.
[7] 高陆玺, 吕雪川, 张弛, 宋翰林, 高肖汉. 用于印染废水处理的改性絮凝剂合成及其脱色性能[J]. 纺织学报, 2022, 43(07): 121-128.
[8] 钱佳琪, 瞿建刚, 胡啸林, 毛庆辉. 还原氧化石墨烯/粘胶基钒酸铋光催化材料的制备及其性能[J]. 纺织学报, 2022, 43(06): 100-106.
[9] 谢梦玉, 胡啸林, 李星, 瞿建刚. 还原氧化石墨烯/粘胶多层复合材料的制备及其界面蒸发性能[J]. 纺织学报, 2022, 43(04): 117-123.
[10] 邓杨, 石现兵, 王涛, 刘利伟, 韩振邦. 负载MIL-53(Fe)的改性聚丙烯腈纤维光催化剂的制备及其性能[J]. 纺织学报, 2022, 43(03): 58-63.
[11] 魏娜娜, 刘碟, 马政, 焦晨璐. 纤维素/壳聚糖磁性气凝胶的冻融法制备及其对染料吸附性能[J]. 纺织学报, 2022, 43(02): 53-60.
[12] 张梦迪, 张维, 姚继明. 天然黏土矿物在靛蓝染色废水电絮凝中的应用[J]. 纺织学报, 2022, 43(02): 196-201.
[13] 施敏慧, 李冰蕊, 王挺, 吴礼光. 高含盐废水中TiO2复合光催化剂光降解甲基橙机制及性能[J]. 纺织学报, 2021, 42(12): 103-110.
[14] 李庆, 陈灵辉, 李丹, 吴志强, 朱炜, 樊增禄. 金属-有机骨架光催化降解染料的研究进展[J]. 纺织学报, 2021, 42(12): 188-195.
[15] 赖星, 王纯, 肖长发, 王黎明, 辛斌杰. 芳香族聚酰胺分离膜制备方法及应用进展[J]. 纺织学报, 2021, 42(10): 172-179.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!