纺织学报 ›› 2022, Vol. 43 ›› Issue (10): 112-118.doi: 10.13475/j.fzxb.20210805808

• 染整与化学品 • 上一篇    下一篇

氮碳量子点/二氧化钛复合整理粘胶织物光催化协同构效

冯艳1,2,3, 李亮1,2,4, 刘淑萍1,2,3, 李淑静1,2,3, 刘让同1,2,3()   

  1. 1.纺织服装产业河南省协同创新中心, 河南 郑州 450007
    2.河南省功能纺织材料重点实验室, 河南 郑州450007
    3.中原工学院 服装学院, 河南 郑州 450007
    4.中原工学院 纺织学院, 河南 郑州 450007
  • 收稿日期:2021-08-13 修回日期:2022-06-29 出版日期:2022-10-15 发布日期:2022-10-28
  • 通讯作者: 刘让同
  • 作者简介:冯艳(1979—),女,讲师,硕士。主要研究方向为纺织服装新材料。
  • 基金资助:
    国家重点研发计划项目(2017YFB0309100)

Photocatalytic synergistic efficiency of viscose fabric loaded with nitrogen carbon quantum dots/titanium dioxide

FENG Yan1,2,3, LI Liang1,2,4, LIU Shuping1,2,3, LI Shujing1,2,3, LIU Rangtong1,2,3()   

  1. 1. Henan Provincial Collaborative Innovation Center of Textile and Clothing, Zhengzhou, Henan 450007, China
    2. Henan Provincial Key Laboratory of Functional Textile Materials, Zhengzhou, Henan 450007, China
    3. College of Fashion Technology, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
    4. Textile College, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
  • Received:2021-08-13 Revised:2022-06-29 Published:2022-10-15 Online:2022-10-28
  • Contact: LIU Rangtong

摘要:

为提高服装面料在太阳光下的光催化自清洁性能,采用柠檬酸和尿素制备氮碳量子点(N-CQDs),并通过水热法与纳米二氧化钛(TiO2)共同整理粘胶织物,制备出太阳光响应复合光催化纺织品。借助扫描电子显微镜、红外光谱仪、紫外-可见分光光度计等对整理前后的粘胶织物进行表征,测试其光学吸收性、光催化降解脱色性和稳定性,研究N-CQDs、TiO2及其复合体系降解罗丹明B的协同构效机制。结果表明:在模拟日光下催化降解罗丹明B 5 h时,经N-CQDs/TiO2整理的粘胶织物脱色率为76.5%,比经TiO2整理粘胶织物的脱色率(51.3%)提高了49.1%,且循环降解6次后,脱色率仍能达到62.34%。

关键词: 粘胶织物, 氮掺杂碳量子点, 二氧化钛, 太阳光催化降解, 协同机制

Abstract:

In order to improve the self-cleaning performance of clothing fabrics under sunlight, nitrogen-doped carbon quantum dots (N-CQDs) were prepared from citric acid and urea, and the composite photocatalytic textiles were created through hydrothermal treatment of viscose fabrics loaded with nitrogen-doped carbon quantum dots and nano titanium dioxide. The viscose fabrics were characterized by means of scanning electron microscope, infrared spectrometer, and ultraviolet-visible photometer, and heir optical absorption, photocatalytic degradation and stability were tested. The synergistic mechanism of degradation of Rhodamine B (RhB) by N-CQDs, TiO2 and their composite systems were studied. The results show that the decolorization rate of fabric loaded with N-CQDs/TiO2 is 76.5%, which is 49.1% higher than that of fabric loaded with TiO2, and the decolorization rate can still reach 62.34% after 6 cycles of photocatalytic degradation of RhB.

Key words: viscose fabric, nitrogen doped carbon quantum dots, titanium dioxide, solar photocatalytic degradation, synergistic mechanism

中图分类号: 

  • TS195.5

图1

N-CQDs的TEM照片和粒径分布图"

图2

粘胶织物的实物照片和SEM照片"

图3

N-CQDs粉末和不同试样的红外光谱图"

图4

N-CQDs/TiO2整理粘胶织物的XPS图"

图5

试样的紫外-可见漫反射光谱图"

图6

RhB在粘胶织物光催化降解下的脱色率与时间关系"

图7

N-CQDs/TiO2和TiO2整理织物的循环光催化降解下RhB的脱色率与循环次数关系"

图8

N-CQDs/TiO2光催化降解RhB机制示意图"

[1] PELEYEJU M G, VILJOEN E L. WO3-based catalysts for photocatalytic and photoelectro-catalytic removal of organic pollutants from water: a review[J]. Journal of Water Process Engineering, 2021. DOI: 10.1016/J.JWPE.2021.101930.
doi: 10.1016/J.JWPE.2021.101930
[2] El-SHEIKH M A, HADIBARATA T, YUNIARTO A, et al. Role of nanocatalyst in the treatment of organochlorine compounds: a review[J]. Chemosphere, 2020. DOI: 10.1016/j.chemosphere.2020.128873.
doi: 10.1016/j.chemosphere.2020.128873
[3] XU M X, WANG Y H, GENG J F, et al. Photo-decomposition of NOx on Ag/TiO2 composite catalysts in a gas phase reactor[J]. Chemical Engineering Journal, 2017, 307:181-188.
doi: 10.1016/j.cej.2016.08.080
[4] ZHOU S L, WNAG F, SUBRAMANIAN B. Facile fabrication of hybrid PA6-decorated TiO2 fabrics with excellent photocatalytic, anti-bacterial, UV light-shielding, and super hydrophobic properties[J]. RSC Advances, 2017, 7(83): 52375-52381.
doi: 10.1039/C7RA09613E
[5] 蒋文雯, 莫慧琳, 樊婷玥, 等. Ag6Si2O7/TiO2复合光催化剂的制备及其对亚甲基蓝的降解性能[J]. 纺织学报, 2021, 42(4):107-113.
JIANG Wenwen, MO Huilin, FAN Tingyue, et al. Preparation of Ag6Si2O7/TiO2 photocatalyst and its photocatalytic degradation of methylene blue[J]. Journal of Textile Research, 2021, 42(4): 107-113.
[6] KIREESAN S, ANDREW M, JOHN L Z, et al. Photocatalysis of estrone in water and wastewater: comparison between Au-TiO2 nanocomposite and TiO2, and degradation by-products[J]. Science of the Total Environment, 2018, 610/611:521-530.
doi: 10.1016/j.scitotenv.2017.08.097
[7] JAIN N, RAVISHANKAR N, MADRAS G. Spectroscopic and kinetic insights of Pt-dispersion over microwave-synthesized GO-supported Pt-TiO2 for CO oxidation[J]. Molecular Catalysis, 2017, 432:88-98.
doi: 10.1016/j.mcat.2017.01.014
[8] WANG K, WANG X Z, PAN H, et al. In situ fabrication of CDs/g-C3N4 hybrids with enhanced interface connection via calcination of the precursors for photocatalytic H2 evolution[J]. International Journal of Hydrogen Energy, 2018, 43(1): 91-99.
doi: 10.1016/j.ijhydene.2017.11.003
[9] 汤晓蕾, 董延茂, 袁妍, 等. 染料敏化TiO2光催化剂的研究进展[J]. 工业水处理, 2021, 41(10):8-13.
TANG Xiaolei, DONG Yanmao, YUAN Yan, et al. Research of dye-sensitized technology on TiO2 photocatalyst[J]. Industrial Water Treatment, 2021, 41(10):8-13.
[10] 周园园, 郑煜铭, 吴小琼, 等. 静电纺纳米纤维光催化剂性能增强方法的研究进展[J]. 纺织学报, 2021, 42(11): 179-186.
ZHOU Yuanyuan, ZHENG Yuming, WU Xiaoqiong, et al. Research progress of performance enhancement methods for electrospun nanofiber-based photo-catalyst[J]. Journal of Textile Research, 2021, 42(11):179-186.
[11] 王春来, 李钒, 杨焜, 等. 碳量子点-二氧化钛复合光催化剂的研究进展[J]. 材料导报, 2018, 32(19):3348-3357.
WANG Chunlai, LI Fan, YANG Kun, et al. Materials research progress on carbon quantum dots-titanium dioxide composite photocatalysts[J]. Materials Review, 2018, 32(19):3348-3357.
[12] 杨玉寒, 杨小芹, 庞军国, 等. 泡沫材料负载TiO2光催化剂的研究进展[J]. 化工新型材料, 2021, 49(11):294-299.
YANG Yuhan, YANG Xiaoqin, PANG Junguo, et al. Research progress of TiO2 photocatalyst supported on foam materials[J]. New Chemical Materials, 2021, 49(11): 294-299.
[13] 徐丽亚, 周梦莹, 张峰, 等. 二氧化钛光催化剂固载化研究进展[J]. 工业催化, 2021, 29(1):16-22.
XU Liya, ZHOU Mengying, ZHANG Feng, et al. A research progress on immobilization of titanium dioxide photocatalyst[J]. Industrial Catalysis, 2021, 29(1):16-22.
[14] 陈文豆, 张辉, 陈天宇, 等. 二氧化钛水热改性涤/棉混纺织物的自清洁性能[J]. 纺织学报, 2020, 41(7): 122-128, 134.
CHEN Wendou, ZHANG Hui, CHEN Tianyu, et al. Self-cleaning properties of titanium dioxide modified polyester/cotton blend fabrics[J]. Journal of Textile Research, 2020, 41(7):122-128, 134.
[15] 田震. 碳点及其复合材料的制备与应用研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2019:40.
TIAN Zhen. Synthesis and applications of carbon dots and their composites[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optical Precision Machinery and Physics, Chinese Academy of Sciences), 2019:40.
[16] 孙正琪, 郭晓玲, 魏俊伟, 等. 棉织物负载硫氮共掺杂TiO2光催化的抗菌整理[J]. 棉纺织技术, 2020, 48(8): 30-34.
SUN Zhengqi, GUO Xiaoling, WEI Junwei, et al. Antibacterial finishing of cotton fabric carrying S-N Co-doped TiO2 visible light photocatalysis[J]. Cotton Textile Technology, 2020, 48(8):30-34.
[17] 普艳平. 氮掺杂石墨烯量子点的微波法合成及荧光传感分析应用[D]. 郑州: 郑州大学, 2017:57.
PU Yanping. The synthesis of nitrogen-doped graphene quantum dots by microwave method and its application in fluorescence sensing analysis[D]. Zhengzhou: Zhengzhou University, 2017:57.
[18] 吴冰钊, 黄红琴, 蒋彩英, 等. 碳量子点在八面双锥和纳米片TiO2上的光催化[J]. 无机化学学报, 2020, 36(3): 443-450.
WU Bingzhao, HUANG Hongqin, JIANG Caiying, et al. Photo catalytic performance of octahedral bipyramids titanium oxide/carbon quantum dots and nanosheet titanium oxide/carbon quantum dots[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(3): 443-450.
[19] 周进. 基于碳量子点半导体复合材料的制备和光催化性能研究[D]. 武汉: 武汉科技大学, 2020:44.
ZHOU Jin. The preparation and photocatalytic properties of carbon quantum dots-based semiconductor compo-sites[D]. Wuhan: Wuhan University of Science and Technology, 2020:44.
[20] 李慧慧, 王群, 苏骑, 等. 花状TiO2/氟硅烷构筑超双疏棉织物及其光催化性能[J]. 印染, 2022, 48(2):17-23.
LI Huihui, WANG Qun, SU Qi, et al. Construction of superamphiphobic cotton fabric with flower-like TiO2/fluorosilane and its photocatalytic properties[J]. China Dyeing & Finishing, 2022, 48(2):17-23.
[21] 庞飞. 基于纳米结构的光催化材料体系的研究[D]. 上海: 华东师范大学, 2017:18-20.
PANG Fei. Study of photocatalytic materials based on nanostructures[D]. Shanghai: East China Normal University, 2017:18-20.
[22] YU H J, ZHAO Y F, ZHOU C, et al. Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution[J]. Journal of Materials Chemistry A, 2014, 2 (10):3259-3678.
doi: 10.1039/c4ta90019g
[1] 杨丽, 王涛, 石现兵, 韩振邦. 改性聚丙烯腈纤维负载MoSx/TiO2光催化材料制备及其降解染料性能[J]. 纺织学报, 2022, 43(09): 149-155.
[2] 金耀峰, 刘雷艮, 王薇, 陆鑫. 纳米纤维素室温诱导下的金红石型纳米二氧化钛制备及其紫外线屏蔽性能[J]. 纺织学报, 2022, 43(02): 176-182.
[3] 张超, 蒋之铭, 朱少彤, 张晨曦, 朱平. 超支化磷酰胺在粘胶织物阻燃整理中的应用[J]. 纺织学报, 2021, 42(07): 39-45.
[4] 娄娅娅, 王静, 董燕超, 王春梅. 粘胶基沸石咪唑骨架材料的制备及其对染料的脱色[J]. 纺织学报, 2021, 42(02): 142-147.
[5] 何雪梅, 冒海燕, 蔡露. 壳聚糖基杂化气凝胶对活性染料的吸附性能[J]. 纺织学报, 2021, 42(02): 148-155.
[6] 陈文豆, 张辉, 陈天宇, 武海良. 二氧化钛水热改性涤/棉混纺织物的自清洁性能[J]. 纺织学报, 2020, 41(07): 122-128.
[7] 钱怡帆, 周堂, 张礼颖, 刘万双, 凤权. 聚丙烯腈/醋酸纤维素/TiO2复合纳米纤维膜的制备及其光催化降解性能[J]. 纺织学报, 2020, 41(05): 8-14.
[8] 罗佳妮, 李丽君, 张晓思, 邹汉涛, 刘雪婷. 氧化石墨烯掺杂TiO2改性活性炭纤维[J]. 纺织学报, 2020, 41(01): 8-14.
[9] 张梦媛, 黄庆林, 黄岩, 肖长发. 静电纺聚四氟乙烯/二氧化钛光催化纳米纤维膜的制备及其应用[J]. 纺织学报, 2019, 40(09): 1-7.
[10] 田圣男 赵健 陈玲玲 吕仪 孙楠楠 王瑞雪 肖长发. 银/二氧化钛可见光催化自清洁织物的制备及其性能[J]. 纺织学报, 2018, 39(12): 89-94.
[11] 周存 李叶燃 马悦 王闻宇 金欣 肖长发. 二氧化钛负载聚酯织物的制备及其光催化性能[J]. 纺织学报, 2018, 39(11): 91-95.
[12] 易兵 胡倩 杨辉琼 阳海 李良臣 区泽棠. 酸性红37光催化降解动力学的响应曲面法优化及其转化机制[J]. 纺织学报, 2018, 39(06): 81-88.
[13] 冯雅妮 张梅 罗胜利 白玉颖 司马义· 艾沙江 邱夷平 蒋秋冉. 光催化除甲醛苎麻织物的低温复合制备[J]. 纺织学报, 2017, 38(12): 106-111.
[14] 贾琳 王西贤 张海霞 覃小红. 聚丙烯腈/二氧化钛纳米纤维的紫外线防护性能[J]. 纺织学报, 2017, 38(07): 18-22.
[15] 刘婉婉 高强 王阳毅 龙啸云 葛明桥. 聚偏氟乙烯/导电TiO2复合压电薄膜的制备[J]. 纺织学报, 2017, 38(06): 6-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!