纺织学报 ›› 2020, Vol. 41 ›› Issue (07): 122-128.doi: 10.13475/j.fzxb.20191003708

• 纤维材料 • 上一篇    下一篇

二氧化钛水热改性涤/棉混纺织物的自清洁性能

陈文豆1,2,3, 张辉1,2,3(), 陈天宇1,2,3, 武海良1,2,3   

  1. 1.西安工程大学 纺织科学与工程学院, 陕西 西安 710048
    2.西安工程大学 功能纺织材料研究中心,陕西 西安 710048
    3.西安工程大学 省部共建智能纺织材料与制品国家重点实验室(培育), 陕西 西安 710048
  • 收稿日期:2019-10-17 修回日期:2020-04-01 出版日期:2020-07-15 发布日期:2020-07-23
  • 通讯作者: 张辉
  • 作者简介:陈文豆(1997—),女,硕士生。主要研究方向为纺织材料改性及功能性纺织产品研发。
  • 基金资助:
    国家自然科学基金面上项目(51873169);陕西省国际科技合作计划项目(2020KW-069)

Self-cleaning properties of titanium dioxide modified polyester/cotton blend fabrics

CHEN Wendou1,2,3, ZHANG Hui1,2,3(), CHEN Tianyu1,2,3, WU Hailiang1,2,3   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Research Center for Functional Textile Materials, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    3. State Key Laboratory of Intelligent Textile Material and Products, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • Received:2019-10-17 Revised:2020-04-01 Online:2020-07-15 Published:2020-07-23
  • Contact: ZHANG Hui

摘要:

为赋予涤/棉混纺织物光催化自清洁性能,基于水热合成技术,分别使用钛酸四丁酯、硫酸钛以及硫酸氧钛在涤/棉混纺织物表面负载纳米TiO2颗粒,借助扫描电子显微镜、X射线衍射仪、傅里叶变换红外光谱仪、热重分析仪和紫外-可见光漫反射光谱仪等对TiO2改性涤/棉混纺织物的结构和性能进行分析,比较了不同种类TiO2前驱体改性涤/棉混纺织物可见光下降解污物的自清洁能力。结果表明:较钛酸四丁酯和硫酸钛改性的涤/棉混纺织物,硫酸氧钛改性涤/棉混纺织物接枝的锐钛矿型TiO2颗粒多且尺寸小,光吸收能力增强,禁带宽度减小,其光催化自清洁性能优异,5次洗涤后自清洁性能没有明显减弱。

关键词: 涤/棉混纺织物, 二氧化钛, 水热合成法, 功能纺织品, 自清洁性能

Abstract:

In order to endow polyester(PET)/cotton blend fabrics with photocatalytic self-cleaning properties, such fabrics were treated by using different nano TiO2 precursors like tetrabutyl titanate, titanium sulfate, and titanium oxysulfate based on the hydrothermal synthesis technique. The TiO2 modified PET/cotton fabrics were characterized by scanning electron microscope, X-ray diffractometer, Fourier transform infrared spectrometer, thermogravimetry analyzer and ultraviolet-vis diffuse reflection spectrometer. In addition, the self-cleaning abilities of such modified fabric samples were evaluated by the removals of organic stains on fabric surfaces. The experimental results confirm that in comparison with tetrabutyl titanate and titanium sulfate, titanium oxysulfate can be positively used as the TiO2 precursor to graft anatase-type TiO2 particles on the surface of PET/cotton fabric. The superior self-cleaning properties of the TiO2 modified PET/cotton fabric is due to the deposition of a large number of ultrafine TiO2 particles on the fabric surface, resulting in the enhanced light absorption ability and reduced band gap. The self-cleaning properties is kept well even after five times of washing.

Key words: polyester/cotton blend fabric, titanium dioxide, hydrothermal synthesis technique, functional textiles, self-cleaning property

中图分类号: 

  • TS151

图1

TiO2改性涤/棉混纺织物的扫描电镜照片"

表1

涤/棉混纺织物的化学元素分析结果"

织物
编号
元素质量百分比/% 元素原子百分比/%
C O Ti C O Ti
1# 56.47 43.53 63.34 36.66
2# 56.45 43.38 0.17 63.39 36.56 0.05
3# 41.51 49.94 8.55 51.16 46.20 2.64
4# 44.78 46.74 8.48 54.62 42.79 2.59

图2

涤/棉混纺织物的X射线衍射谱图"

图3

涤/棉混纺织物的红外光谱图"

图4

涤/棉混纺织物的热稳定性曲线"

图5

涤/棉混纺织物的漫反射光谱曲线和(αhv)1/2与hv关系曲线"

图6

涤/棉混纺织物对咖啡溶液自清洁情况"

图7

涤/棉混纺织物对亚甲基蓝溶液自清洁情况"

图8

涤/棉混纺织物对火龙果汁自清洁情况"

图9

不同洗涤次数下硫酸氧钛改性涤/棉混纺织物光催化自清洁降解亚甲基蓝染料效果图"

[1] SIVAKUMAR A, MURUGAN R, PERIYASAMY S. Evaluation of multifunctional properties of polyester/cotton blend treated with unmodified and modified nano-TiO2 particles[J]. Materials Technology, 2016,31(5):286-298.
[2] KHAN M Z, ASHRAF M, HUSSAIN T, et al. In situ deposition of TiO2 nanoparticles on polyester fabric and study of its functional properties[J]. Fibers and Polymers, 2015,16(5):1092-1097.
doi: 10.1007/s12221-015-1092-8
[3] HUMAYUN M, RAZIQ F, KHAN A, et al. Modification strategies of TiO2 for potential applications in photocatalysis: acritical review[J]. Green Chemistry Letters and Reviews, 2018,11(2):86-102.
doi: 10.1080/17518253.2018.1440324
[4] LEE K, YOON H, AHN C, et al. Strategies to improve the photocatalytic activity of TiO2: 3D nanostructuring and heterostructuring with graphitic carbon nanomaterials[J]. Nanoscale, 2019,11(15):7025-7040.
pmid: 30920558
[5] REDDY K R, HASSAN M, GOMES V G. Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis[J]. Applied Catalysis A:General, 2015,489:1-16.
[6] GORJANC M, SALA M. Durable antibacterial and UV protective properties of cellulose fabric functionalized with Ag/TiO2 nanocomposite during dyeing with reactive dyes[J]. International Journal of Nanomedicine, 2017,12:2593-2606.
pmid: 28408826
[7] ZHANG Weiwei, ZHANG Desuo, CHEN Yuyue, et al. Hyperbranched polymer functional TiO2 nanoparticles: synjournal and its application for the anti-UV finishing of silk fabric[J]. Fibers and Polymers, 2015,16(3):503-509.
doi: 10.1007/s12221-015-0503-1
[8] EL-NAGGER A A, ELSAYED S S, IBRAHIM S M. Effects of TiO2 on the hydrophilicity of cotton/polyester (50/50) blend fabric under UV irradiation[J]. Nanotechnology Business Journal, 2017,90(2):277-283.
[9] 解芳, 米丹. 纳米二氧化钛水溶胶对涤纶织物的抗静电整理[J]. 染整技术, 2008,30(10):14-15.
XIE Fang, MI Dan. Antistatic finishing of polyester fabric with nano titanium dioxide hydrosol[J]. Textile Dyeing and Finishing Journal, 2008,30(10):14-15.
[10] MONTAZER M, SEIFOLLAHZADEH S. Pretreatment of wool/polyester blended fabrics to enhance titanium dioxide nanoparticle adsorption and self-cleaning properties[J]. Coloration Technology, 2011,127(5):322-327.
doi: 10.1111/j.1478-4408.2011.00316.x
[11] LI Zhiqiang, DONG Yongchun, LI Bing, et al. Creation of self-cleaning polyester fabric with TiO2 nanoparticles via a simple exhaustion process: conditions optimization and stain decomposition pathway[J]. Materials & Design, 2018,140:366-375.
[12] 吕赛龙, 霍瑞亭, 贾国强. 光催化自清洁纺织品的制备及其性能[J]. 纺织学报, 2018,39(5):87-91.
LÜ Sailong, HUO Ruiting, JIA Guoqiang. Preparation and properties of photocatalytic self-cleaning textiles[J]. Journal of Textile Research, 2018,39(5):87-91.
[13] CAPUTO F, NICOLA M D E, SIENKIEWICZ A, et al. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis[J]. Nanoscale, 2015,7(38):15643-15656.
doi: 10.1039/c5nr03767k pmid: 26349675
[14] LIU Shi, ZHANG Qian, XU Zhangjie, et al. Surface modification of TiO2/SiO2 composite hydrosol stabilized with polycarboxylic acid on Kroy-process wool fabric[J]. Journal of Adhesion Science and Technology, 2017,31(11):1209-1218.
doi: 10.1080/01694243.2016.1249687
[15] YU Jian, PANG Zengyuan, ZHENG Chenghui, et al. Cotton fabric finished by PANI/TiO2 with multifunctions of conductivity, anti-ultraviolet and photocatalysis activity[J]. Applied Surface Science, 2018,470:84-90.
doi: 10.1016/j.apsusc.2018.11.112
[16] KAPLAN R, ERJAVEC B, DRAZIC G, et al. Simple synjournal of anatase/rutile/brookite TiO2 nanocomposite with superior mineralization potential for photocatalytic degradation of water pollutants[J]. Applied Catalysis B:Environmental, 2016,181:465-474.
doi: 10.1016/j.apcatb.2015.08.027
[17] ZIKRIYA M, NADAF Y F, BHARATHY P V, et al. Luminescent characterization of rare earth Dy~(3+) ion doped TiO2 prepared by simple chemical co-precipitation method[J]. Journal of Rare Earths, 2019,37(1):24-31.
doi: 10.1016/j.jre.2018.05.012
[18] MONTAZER M, SEIFOLLAHZADEH S. Enhanced self-cleaning, antibacterial and UV protection properties of nano TiO2 treated textile through enzymatic pretreat-ment[J]. Photochemistry and Photobiology, 2011,87(4):877-83.
doi: 10.1111/j.1751-1097.2011.00917.x
[19] XIAO Xingfang, LIU Xin, CHEN Fengxia, et al. Highly anti-UV properties of silk fiber with uniform and conformal nanoscale TiO2 coatings via atomic layer deposition[J]. ACS Applied Materials & Interfaces, 2015,7(38):21326-21333.
doi: 10.1021/acsami.5b05868 pmid: 26389713
[20] IWASAKI M, MIYAMOTO Y, ITO S, et al. Fabrication of platy apatite nanocrystals loaded with TiO2 nanoparticles by two-step emulsion method and their photocatalytic activity[J]. Journal of Colloid and Interface Science, 2008,326(2):537-540.
doi: 10.1016/j.jcis.2008.07.041 pmid: 18703202
[21] GUPTA V K, FAKHRL A, AGARWAL S, et al. Preparation and characterization of TiO2 nanofibers by hydrothermal method for removal of Benzodiazepines (Diazepam) from liquids as catalytic ozonation and adsorption processes[J]. Journal of Molecular Liquids, 2018,249:1033-1038.
doi: 10.1016/j.molliq.2017.11.144
[22] ZHANG H, ZHANG X T. Modification and dyeing of silk fabric treated with tetrabutyl titanate by hydrothermal method[J]. Journal of Natural Fibers, 2014,11(1):25-38.
doi: 10.1080/15440478.2013.824852
[23] ZHANG Hui, ZHU Linlin, SUN Runjun. Structure and properties of cotton fibers modified with titanium sulfate and urea under hydrothermal conditions[J]. Journal of Engineered Fibres and Fabrics, 2014,9(1):67-75.
[24] BAVYKIN D V, DUBOVITSKAYA V P, VORONTSOV A V, et al. Effect of TiOSO4 hydrothermal hydrolysis conditions on TiO2 morphology and gasphase oxidative activity[J]. Research on Chemical Intermediates, 2007,33(3-5):449-464.
doi: 10.1163/156856707779238702
[25] XU Hao, LIU Shiqi, ZHOU Shan, et al. Morphology and photocatalytic performance of nano-sized TiO2 prepared by simple hydrothermal method with different pH values[J]. Rare Metals, 2018,37(9):750-758.
doi: 10.1007/s12598-017-0960-3
[26] RANA M, HAO B, MU L, et al. Development of multi-functional cotton fabrics with Ag/AgBreTiO2 nanocomposite coating[J]. Composites Science and Technology, 2016,122:104-112.
doi: 10.1016/j.compscitech.2015.11.016
[27] ZHOU Wenya, ZHANG Yangyang, SHI Yidong. In situ Loading TiO2 and its photocatalysis and UV resistance on cotton fabric[J]. Fibers and Polymers, 2017,18(6):1073-1078.
doi: 10.1007/s12221-017-1055-3
[28] ZHANG Hui, YANG Lu. Imbuing titanium dioxide into cotton fabric using tetrabutyl titanate by hydrothermal method[J]. Journal of The Textile Institute, 2012,103(8):885-892
doi: 10.1080/00405000.2011.621678
[29] BOZZI A, YURANOVA T, KIWI J. Self-cleaning of wool-polyamide and polyester textiles by TiO2-rutile modification under daylight irradiation at ambient temperature[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2005,172:27-34.
doi: 10.1016/j.jphotochem.2004.11.010
[30] BANERJEE S, DIONYSIOU D D, PILLAI S C. Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis[J]. Applied Catalysis B-Environmental, 2015,176:396-428.
[31] ZHANG Xi, AI Zhihui, JIA Falong, et al. Generalized one-pot synjournal characterization, and photocatalytic activity of hierarchical BiOX (X=Cl, Br, I) nanoplate microspheres[J]. Journal of Physical Chemistry C, 2008,112(3):747-753.
doi: 10.1021/jp077471t
[32] ZHANG Yeguang, ZHANG Shufen, WU Suli. Room-temperature fabrication of TiO2-PHEA nanocomposite coating with high transmittance and durable superhydrophilicity[J]. Chemical Engineering Journal, 2019,371:609-617.
[33] ZUNIC V, VUKOMANOVIC M, SKAPIN S D, et al. Photocatalytic properties of TiO2 and TiO2/Pt: a sol-precipitation, sonochemical and hydrothermal approach[J]. Ultrasonics Sonochemistry, 2014,21(1):367-375.
doi: 10.1016/j.ultsonch.2013.05.018 pmid: 23831420
[34] WU Deyong, LONG Mingce, ZHOU Jiangya, et al. Synjournal and characterization of self-cleaning cotton fabrics modified by TiO2 through a facile approach[J]. Surface & Coatings Technology, 2009,203(24):3728-3733.
[35] MILOSEVIC M, KRKOBABIC A, RADOICIC M, et al. Biodegradation of cotton and cotton/polyester with Ag/TiO2 nanoparticles in soil[J]. Carbohydrate Polymers, 2017,158:77-84.
doi: 10.1016/j.carbpol.2016.12.006 pmid: 28024545
[36] CHUNG C, LEE M, CHOE E K. Characterization of cotton fabric scouring by FT-IR ATR spectroscopy[J]. Carbohydrate Polymers, 2004,58(4):417-420.
[37] UDDIN M J, CESANO F, SCARANO D, et al. Cotton textile fibres coated by Au/TiO2 films: synjournal, characterization and self cleaning properties[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2008,199(1):64-72.
[38] MIHAILOVIC D, SAPONJICZ, MOLINAR, et al. Improved properties of oxygen and argon rf plasma-activated polyester fabrics loaded with TO2 nanopar-ticles[J]. ACS Applied Materials & Interfaces, 2016,2(6):1700-1706.
doi: 10.1021/am100209n pmid: 20524631
[1] 张艳艳, 詹璐瑶, 王培, 耿俊昭, 付飞亚, 刘向东. 用无机纳米粒子制备耐久性抗菌棉织物的研究进展[J]. 纺织学报, 2020, 41(11): 174-180.
[2] 钱怡帆, 周堂, 张礼颖, 刘万双, 凤权. 聚丙烯腈/ 醋酸纤维素/ TiO2 复合纳米纤维膜的制备及其光催化降解性能[J]. 纺织学报, 2020, 41(05): 8-14.
[3] 常硕, 沈加加. 纺织品的石墨烯耐久功能整理研究进展[J]. 纺织学报, 2020, 41(02): 179-186.
[4] 罗佳妮, 李丽君, 张晓思, 邹汉涛, 刘雪婷. 氧化石墨烯掺杂TiO2改性活性炭纤维[J]. 纺织学报, 2020, 41(01): 8-14.
[5] 徐林, 任煜, 张红阳, 吴双全, 李雅, 丁志荣, 蒋文雯, 徐思峻, 臧传锋. 涤纶织物表面TiO2/氟硅烷超疏水层构筑及其性能[J]. 纺织学报, 2019, 40(12): 86-92.
[6] 何青青, 徐红, 毛志平, 张琳萍, 钟毅, 吕景春. 高导电性聚吡咯涂层织物的制备[J]. 纺织学报, 2019, 40(10): 113-119.
[7] 张梦媛, 黄庆林, 黄岩, 肖长发. 静电纺聚四氟乙烯/二氧化钛光催化纳米纤维膜的制备及其应用[J]. 纺织学报, 2019, 40(09): 1-7.
[8] 田圣男 赵健 陈玲玲 吕仪 孙楠楠 王瑞雪 肖长发. 银/二氧化钛可见光催化自清洁织物的制备及其性能[J]. 纺织学报, 2018, 39(12): 89-94.
[9] 周存 李叶燃 马悦 王闻宇 金欣 肖长发. 二氧化钛负载聚酯织物的制备及其光催化性能[J]. 纺织学报, 2018, 39(11): 91-95.
[10] 易兵 胡倩 杨辉琼 阳海 李良臣 区泽棠. 酸性红37光催化降解动力学的响应曲面法优化及其转化机制[J]. 纺织学报, 2018, 39(06): 81-88.
[11] 杜晗笑 郑振荣 曹森学 陈逢亮. 超疏水气凝胶涂层超高分子量聚乙烯织物的制备与表征[J]. 纺织学报, 2018, 39(04): 93-99.
[12] 冯雅妮 张梅 罗胜利 白玉颖 司马义· 艾沙江 邱夷平 蒋秋冉. 光催化除甲醛苎麻织物的低温复合制备[J]. 纺织学报, 2017, 38(12): 106-111.
[13] 陈威 关晋平 陈国强 匡小慧. 静电层层自组装法整理多巴胺改性涤/棉混纺织物的阻燃性能[J]. 纺织学报, 2017, 38(09): 94-100.
[14] 贾琳 王西贤 张海霞 覃小红. 聚丙烯腈/二氧化钛纳米纤维的紫外线防护性能[J]. 纺织学报, 2017, 38(07): 18-22.
[15] 刘婉婉 高强 王阳毅 龙啸云 葛明桥. 聚偏氟乙烯/导电TiO2复合压电薄膜的制备[J]. 纺织学报, 2017, 38(06): 6-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!