纺织学报 ›› 2025, Vol. 46 ›› Issue (05): 222-226.doi: 10.13475/j.fzxb.20240304001

• 服装工程 • 上一篇    下一篇

三维个性化针织服装的针法建模

李际军(), 刘泽华   

  1. 浙江大学 计算机科学与技术学院, 浙江 杭州 310027
  • 收稿日期:2024-03-18 修回日期:2025-01-09 出版日期:2025-05-15 发布日期:2025-06-18
  • 作者简介:李际军(1967—),男,副教授,博士。主要研究方向为计算机图形学、CAD。E-mail: lijijun@cs.zju.edu.cn
  • 基金资助:
    浙江省基础公益研究计划项目(LGF19F020017)

Stitch modeling of three-dimensional personalized knitted garment

LI Jijun(), LIU Zehua   

  1. College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang 310027, China
  • Received:2024-03-18 Revised:2025-01-09 Published:2025-05-15 Online:2025-06-18

摘要:

针织针法多样性是针织服装的特色之一,利用三维仿真的方法拓展并模拟各种针法可以显著提升针织衣物设计效率。针法的三维仿真主要包含三维建模和实时渲染2个阶段。建模阶段提出了一套参数化的针法设计方法,通过改进的非均匀Catmull-Rom曲线金字塔算法生成纱线中心轨迹曲线、扫掠生成纱线的三维模型,拓展了针织织法类型,实现了基于基础针法的复杂针法快速建模;渲染阶段利用环境光遮蔽Phong算法和Kajiya-Kay光照模拟算法分别对纱线模型的主干部分和毛刺部分渲染,获得实时的逼真效果。在此基础上设计实现了用户自定义针法库模块,针法库包括针法类型、织行数与针脚数、针法结点拓扑关系等细节,可为后续各个针法建模组件提供参考。验证结果表明,所提三维模型算法实现了针织衣片针法自由设计、服装三维真实感展示等功能。

关键词: 针织服装, 针法建模, 针法库模块, 针法设计, 实时渲染, 三维仿真

Abstract:

Objective The design process of knitted fabrics is long and high in cost, including material cost and time cost. Computer simulation technology can greatly simplify the design process, but knitted fabrics are difficult to simulate due to their complex structural characteristics. This study represents an effort to provide a solution to this problem by three-dimensional (3-D) modeling of stitches and real-time rendering of knitted fabrics.
Method The three-dimensional simulation of needlework mainly includes two stages, i.e., three-dimensional modeling and real-time rendering. In the modeling stage, the yarn center trajectory curve is generated by the improved non-uniform Catmull-Rom curve pyramid algorithm, and the three-dimensional model of the yarn is generated by sweeping, so as to realize the rapid modeling of complex stitch based on basic stitch. In the rendering stage, the ambient light occlusion Phong algorithm and the Kajiya-Kay lighting simulation algorithm are adopted to render the main part and burr part of the yarn model respectively, so as to obtain real-time realistic effects.
Result Based on the actual operation needs of knitting designers, this study refers to relevant general weaving methods at home and abroad, and uses the improved non-uniform Catmull-Rom curve pyramid algorithm to generate the yarn center trajectory curve and then sweep to generate the yarn three-dimensional model, realizing the parametric modeling of positive stitches, reverse stitches, and twisted stitches, and perfectly solving the modeling problems that are easy to appear, such as yarn distortion and model penetration. The parametric needle design mode is not only compatible with the commonly used conventional weaving methods, but also expands the designer's free innovation design capabilities. In addition, the design implements a user-defined stitches library module, including details such as stitches type, number of knitting rows and stitches, and topological relationship of stitches nodes. Various distinctive complex stitches can be independently designed and stored, providing data support for designers' personalized innovative designs. Users can design various stitches and automatically load them into the model library as basic stitches for expansion. In the rendering stage, this paper uses OpenGL to achieve realistic real-time rendering of yarn fiber details of knitted garments, uses line elements to simulate the fibers in the yarn model to improve rendering efficiency, and uses the ambient occlusion Phong algorithm and the Kajiya-Kay lighting simulation algorithm to render the main body and burr part of the yarn model, respectively, taking into account the characteristics of different rendering subjects, and obtains realistic rendering effects while having good rendering efficiency. In addition, the stitches model generated by sweeping the center line of the yarn has a good compatibility with this rendering algorithm. Since the process of calculating the center point of the yarn is omitted, it has a faster computing speed, which further improves the rendering efficiency. The rendering result diagram well reflects the structural characteristics and design elements of the stitches method.
Conclusion The 3-D simulation method is utilized to expand and simulate various stitches, which significantly improves the efficiency of knitted clothing design. The improvement of design efficiency is mainly reflected in two aspects. (1) A module for user-defined stitch library is designed to facilitate the design and use of various stitches, and (2) the real-time display of knitted fabric simulation effects is achieved through 3-D modeling and real-time rendering technology of stitches, which is convenient for designers to improve design elements.

Key words: knitted garment, stitch modeling, module of stitch library, stitch design, real-time rendering, three-dimensional simulation

中图分类号: 

  • TP391.7

图1

用户自定义针法库与其它设计模块的交互"

图2

针法设计界面"

图3

标准针法和自定义针法"

图4

爆米花针针法设计图"

图5

基础针法衍化的例子"

图6

系统框架流程图"

图7

针法标志视图与织物视图"

图8

连衣裙针法设计效果图"

[1] JAMSHAID Hafsa, MISHRA Rahesh. Knitting science, technology, process and materials: a sustainable approach[M]. Hong Kong: Springer, 2024:1-13.
[2] KYOSEV Yordan, BOUSSU Framcois. Advanced weaving technology[M]. Lille: Springer, 2022: 195-251.
[3] Knitting design software:7 best to use in 2025[R/OL].[2024-01-08]. https://windowsreport.com/knitting-design-software.
[4] SPERL Georg, NARAIN Rahul, WOJTAN Chris. Homogenized yarn-level cloth[J]. ACM Trans Graph, 2020, 39(4): 1-15.
[5] LEAF Jonathan, WU Rundong, ESTON Schweickart, et al. Interactive design of periodic yarn-level cloth patterns[J]. ACM Trans Graph, 2018, 37(6):1-15;.
[6] YUKSEL Cem, KALDOR Jonathan M, JAMES Doug L, et al. Stitch meshes for modeling knitted clothing with yarn-level detail[J]. ACM Trans Graph, 2012, 31(4):1-12.
[7] KALDOR Jonathan M, JAMES Doug L, MARSCHNER Steve. Simulating knitted cloth at the yarn level[J]. ACM Trans Graph, 2008, 27(3):1-9.
[8] ZHAO S, LUAN F, BALA K. Fitting procedural yarn models for realistic cloth rendering[J]. ACM Trans Graph, 2016, 35(4): 1-11.
[9] DELBUKBUREWATTE G B, DIAS T. Porosity and capillarity of weft knitted spacer structures[J]. Fibers and Polymers, 2009, 10(2): 226-230.
[10] LIU Haisang, KYOSEV Yordan, JIANG Gaoming. Yarn-level modeling and geometric simulation of warp-knitted clothing elements-first results and chall-enges[J]. Communications in Development and Assembling of Textile Products, 2022, 3(2):115-126.
[11] FUKUTA Yuka, OHTA Kouichi, KINARI Toshiyasu. 3D modelling of basic weft-knitted fabric structures[J]. Journal of Textile Engineering, 2011, 57(2):37-44.
[12] HTOO Nyi Nyi, SOGA Atsushi, WAKAKO Lina, et al. 3-Dimension simulation for loop structure of weft-knitted fabric considering mechanical properties of yarn[J]. Journal of Fiber Science and Technology, 2017, 73(5):105-113.
[13] 日本宝库社. 棒针编织针法符号125和编织花样125[M]. 郑州: 河南科学技术出版社, 2013:1-127.
Japanese Treasure House. Bar needle weaving needle method symbol 125 and weaving pattern 125[M]. Zhengzhou: Henan Science and Technology Press, 2013:1-127.
[14] 王晗. 纬编织物三维服装建模算法的研究与实现[D]. 杭州: 浙江大学, 2019:1-64.
WANG Han. Research and implementation of 3D clothing modeling algorithm for weft knitted fabric[D]. Hangzhou: Zhejiang University, 2019:1-64.
[15] 张玚. 三维织物针法设计与真实感显示的研究与实现[D]. 杭州: 浙江大学, 2021:1-82.
ZHANG Ting. Research and implementation of 3D fabric needle design and realistic display[D]. Hangzhou: Zhejiang University, 2021:1-82.
[16] 王丰. 虚拟服装衣片设计与缝合算法研究[D]. 杭州: 浙江大学, 2018:1-51.
WANG Feng. Research on virtual clothing piece design and sewing algorithm[D]. Hangzhou: Zhejiang University, 2018:1-51.
[17] 秦令森. 虚拟服装纹理对齐与多层衣片建模的研究与实现[D]. 杭州: 浙江大学, 2021:1-67.
Qin Lingsen. Research and implementation of virtual clothing texture alignment and multi layer clothing piece modeling[D]. Hangzhou: Zhejiang University, 2021:1-67.
[18] LI Y, YANG L, CHEN S, et al. Three dimensional simulation of weft knitted fabric based on surface model[J]. Computer Modeling & New Technologies, 2014, 18(3):52-57.
[19] MCKEE P J, SOKOLOW A C, YU J H, et al. Finite element simulation of ballistic impact on single jersey knit fabric[J]. Composite Structures, 2017, 162:98-107.
[20] VASSILIADISA S G, KALLIVRETAKI A E, PROVATIDIS C G. Geometrical modelling of plain weft knitted fabrics[J]. Indian Journal of Fibre & Textile Research, 2007, 32: 62-71.
[21] WU K, YUKSEL C. Real-time fiber-level cloth rendering[C]// I3D'17: Proceedings of the 21st ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. San Francisco, California: Association for Computing Machinery, 2017. DOI: 10.1145/3023368.3023372.
[22] 刘欧. 针织衣物的渲染与任意姿势的人体着装算法研究[D]. 杭州: 浙江大学, 2020:1-59.
LIU Ou. Research on the rendering of knitted clothing and the algorithm for human body dressing in any posture[D]. Hangzhou: Zhejiang University, 2020:1-59.
[1] 顾文敏, 蒋高明, 刘海桑, 李炳贤. 基于网格模型的全成形裙装三维仿真[J]. 纺织学报, 2025, 46(05): 214-221.
[2] 尚静雨, 蒋高明, 陈钰珊, 刘海桑, 李炳贤. 花式纱罗织物设计与三维仿真[J]. 纺织学报, 2025, 46(04): 81-88.
[3] 马运娇, 王蕾, 潘如如. 基于双斜交平面镜的纱线条干三维仿真[J]. 纺织学报, 2025, 46(02): 86-91.
[4] 关松松, 蒋高明, 杨美玲, 李炳贤. 基于线圈结构的双针床经编毛绒织物三维仿真[J]. 纺织学报, 2024, 45(09): 84-90.
[5] 赵俊杰, 蒋高明, 程碧莲, 李炳贤. 毛衫绞花织物的三维仿真与实现[J]. 纺织学报, 2023, 44(12): 81-87.
[6] 杨美玲, 蒋高明, 王婷, 李炳贤. 基于弹簧-质点模型的单贾卡经编鞋材三维仿真[J]. 纺织学报, 2023, 44(11): 113-119.
[7] 杨美玲, 蒋高明, 王婷, 李炳贤. 经编间隔鞋材设计与三维仿真[J]. 纺织学报, 2023, 44(08): 96-102.
[8] 郑培晓, 蒋高明, 丛洪莲, 李炳贤. 多色调线横条纹织物的设计与三维仿真[J]. 纺织学报, 2023, 44(06): 85-90.
[9] 陈钰珊, 蒋高明, 李炳贤. 纬编绕经织物设计与三维仿真[J]. 纺织学报, 2022, 43(12): 62-68.
[10] 路丽莎, 蒋高明. 全成形针织服装三维款式向二维样板转化方法[J]. 纺织学报, 2022, 43(10): 133-140.
[11] 詹必钦, 李玉贤, 董智佳, 丛洪莲. 全成形双层结构针织服装部件化虚拟展示研究[J]. 纺织学报, 2022, 43(08): 147-152.
[12] 詹必钦, 丛洪莲, 吴光军. 全成形双层结构针织服装工艺模型研究与应用[J]. 纺织学报, 2021, 42(03): 149-154.
[13] 代振兴, 陈广锋, 陈革. 基于Rhino-Python的多圈高簇绒地毯三维仿真[J]. 纺织学报, 2020, 41(06): 69-75.
[14] 范晓健 李晶 刘红卫 王善凯 孙晓盼. 碳纤维层叠布用缝纫机的改进设计与三维仿真[J]. 纺织学报, 2016, 37(10): 141-144.
[15] 徐艳华 杨婧. 纸样技术在非常规造型毛针织服装编织工艺中的应用[J]. 纺织学报, 2016, 37(08): 107-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!