纺织学报 ›› 2025, Vol. 46 ›› Issue (06): 212-222.doi: 10.13475/j.fzxb.20240606801
丁司懿1,2,3,4(
), 童辉辉5, 毛新华4, 张洁1,2,3
DING Siyi1,2,3,4(
), TONG Huihui5, MAO Xinhua4, ZHANG Jie1,2,3
摘要:
为解决卷绕机装配车间这种复杂环境中难以高效准确定位的问题,提出了基于无线网络(WiFi)的分层定位方法。通过分析装配车间无线网络环境的特点及其特定的定位需求,并结合卷绕机装配车间内的无线网络定位的特点,开发了一种结合XGBoost分类模型算法、K-means聚类算法和加权K最近邻(WKNN)算法的无线网络分层定位方法。同时,依据装配车间的特点与需求对定位区域进行有效划分并初步构建指纹库,根据装配车间内WiFi信号的特点,使用K-means聚类算法分割并更新指纹库;然后利用XGBoost分类模型算法确定子区域实现粗定位,再用WKNN算法精确定位。实验结果表明:该方法在定位精度上比传统WKNN算法提高了143.82%,平均定位时间减少了约20%;这些改进有效提升了卷绕机装配车间中无线网络定位的准确性和效率。
中图分类号:
| [1] | 袁春妹, 墨影, 夏小云. 化纤和非织造机械:应市场需求而动[J]. 纺织机械, 2023(6):34-35. |
| YUAN Chunmei, MO Ying, XIA Xiaoyun. Chemical fiber and nonwoven machinery: moving in response to market demand[J]. Textile Machinery, 2023(6):34-35. | |
| [2] | 和钰杭. 化纤卷绕机锭轴回转精度预测与优化[D]. 上海: 东华大学,2022:23-24. |
| HE Yuhang. Prediction and optimization of rotary accuracy of spindle shaft in chemical fiber winding machine[D]. Shanghai: Donghua University,2022:23-24. | |
| [3] | 刘甜萌. 高速卷绕锭轴支承系统动力学性能研究[D]. 上海: 东华大学,2022:14-15. |
| LIU Tianmeng. Research on the dynamic performance of high-speed winding spindle shaft support system[D]. Shanghai: Donghua University,2022:14-15. | |
| [4] | 何守磊. 自动落卷输送控制系统研究与开发[D]. 上海: 东华大学,2021:17-18. |
| HE Shoulei. Research and development of automatic unwinding and conveying control system[D]. Shanghai: Donghua University,2021: 17-18. | |
| [5] | 任杰, 张洁, 汪俊亮. 纺织典型装备故障多特征自适应提取方法[J]. 纺织学报, 2024, 45(4): 211-220. |
| REN Jie, ZHANG Jie, WANG Junliang. Multi-feature adaptive extraction method for textile typical equipment faults[J]. Journal of Textile Research, 2024, 45(4): 211-20. | |
| [6] | 任荟颖, 邹鲲, 胡小荣. 化纤长丝自动落卷系统仿真平台开发[J]. 纺织学报, 2019, 40(7): 151-157. |
| REN Huiying, ZOU Kun, HU Xiaorong. Development of simulation platform for automatic unwinding system of chemical fiber filament[J]. Journal of Textile Research, 2019, 40(7): 151-157. | |
| [7] |
李珣, 李哲文, 张婷文, 等. 面向纺织生产环境的移动机器人定位方法[J]. 纺织学报, 2023, 44(12): 170-180.
doi: 10.13475/j.fzxb.20220606701 |
|
LI Xun, LI Zhewen, ZHANG Tingwen, et al. A mobile robot localization method for textile production environment[J]. Journal of Textile Research, 2023, 44(12): 170-180.
doi: 10.13475/j.fzxb.20220606701 |
|
| [8] | 丁歆甯. 基于机器视觉的室内定位与地图构建研究[D]. 南京: 南京邮电大学,2021:30-32. |
| DING Xinning. Research on indoor localization and map construction based on machine vision[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2021: 30-32. | |
| [9] | 刘韬, 徐爱功, 隋心. 基于自适应抗差卡尔曼滤波的UWB室内定位[J]. 传感技术学报, 2018, 31(4):567-572. |
| LIU Tao, XU Aigong, SUI Xin. UWB indoor localization based on adaptive anti-differential Kalman filtering[J]. Journal of Sensing Technology, 2018, 31(4):567-572. | |
| [10] | KWOK C Y T, WONG M S, GRIFFITHS S, et al. Performance evaluation of iBeacon deployment for location-based services in physical learning spaces[J]. Applied Sciences: Basel, 2020.DOI:10.3390/app10207126. |
| [11] | CANOVAS O, LOPEZ-DE-TERUEL P E, RUIZ A. Detecting indoor/outdoor places using wifi signals and AdaBoost[J]. IEEE Sensors Journal, 2017, 17(5): 1443-53. |
| [12] | CHON Y, CHA H. Lifemap: a smartphone-based context provider for location-based services[J]. IEEE Pervasive Computing, 2011, 10(2): 58-67. |
| [13] | 刘晨旭, 王兴众, 郭浩年. 基于WiFi指纹的船舶人员定位算法[J]. 船舶物资与市场, 2023, 31(8):106-111. |
| LIU Chenxu, WANG Xingzhong, GUO Haonian. Ship personnel localization algorithm based on WiFi fingerprint[J]. Ship Materials and Markets, 2023, 31(8):106-111. | |
| [14] | 张静. 基于改进K-means聚类和WKNN算法的WiFi室内定位方法研究[D]. 呼和浩特: 内蒙古大学,2022:13-14. |
| ZHANG Jing. A research on wifi indoor positioning method based on improved K-means clustering and WKNN algorithm[D]. Hohhot: Inner Mongolia University, 2022:13-14. |
| [1] | 聂梓萌, 杜劲松, 朱建龙, 岳春明, 葛旭光. 基于仿真区域性数据的服装团体定制归号机制[J]. 纺织学报, 2023, 44(05): 191-197. |
| [2] | 任艳博, 蒋超, 王教庆, 俞琳, 王园园. 基于聚类算法和色彩网络的蝴蝶色彩分析及应用[J]. 纺织学报, 2021, 42(05): 103-108. |
| [3] | 彭来湖 陈青松 汝欣 胡旭东 沈春娅. 圆纬机互联互通关键技术[J]. 纺织学报, 2018, 39(05): 119-124. |
|
||