纺织学报 ›› 2025, Vol. 46 ›› Issue (08): 145-153.doi: 10.13475/j.fzxb.20250103001

• 染整工程 • 上一篇    下一篇

单宁酸基高效阻燃Lyocell织物的制备及其性能

许云凯1,2,3,4, 宋婉萌1,2,3,4, 张旭1,2,3,4, 刘云1,2,3,4()   

  1. 1.青岛大学 纺织服装学院, 山东 青岛 266071
    2.青岛大学 功能纺织品与先进材料研究院, 山东 青岛 266071
    3.青岛大学 新型防火阻燃材料开发与应用国家地方联合工程研究中心, 山东 青岛 266071
    4.青岛大学 青岛市阻燃纺织材料重点实验室, 山东 青岛 266071
  • 收稿日期:2025-01-13 修回日期:2025-04-16 出版日期:2025-08-15 发布日期:2025-08-15
  • 通讯作者: 刘云(1982—),女,教授,博士。主要研究方向为功能纤维及纺织品。E-mail:yliu@qdu.edu.cn
  • 作者简介:许云凯(2001—),男,硕士生。主要研究方向为阻燃后整理纺织品。
  • 基金资助:
    国家自然科学基金面上项目(52373059)

Preparation and properties of high-efficient flame-retardant Lyocell fabrics with tannic acid based flame retardants

XU Yunkai1,2,3,4, SONG Wanmeng1,2,3,4, ZHANG Xu1,2,3,4, LIU Yun1,2,3,4()   

  1. 1. College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, China
    2. Institute of Functional Textiles and Advanced Materials, Qingdao University, Qingdao, Shandong 266071, China
    3. National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao University, Qingdao, Shandong 266071, China
    4. Qingdao Key Laboratory of Flame-Retardant Textile Materials, Qingdao University, Qingdao, Shandong 266071, China
  • Received:2025-01-13 Revised:2025-04-16 Published:2025-08-15 Online:2025-08-15

摘要: 针对Lyocell织物易燃的缺点,选用生物质多酚单宁酸(TA)和二乙烯三胺五甲叉膦酸(DTPMPA)为原料,制备了阻燃剂(TD),通过轧烘焙的方法对Lyocell织物进行阻燃整理,研究了阻燃Lyocell织物的阻燃、力学、抗菌、抗紫外线和透气等性能。结果表明:阻燃剂可附着到Lyocell织物上,但未阻塞Lyocell纤维之间的空隙,因而可赋予Lyocell织物良好的阻燃性能;阻燃Lyocell织物可实现离火自熄,经100 g/L TD整理的Lyocell织物其损毁长度仅为51 mm,续燃时间和阴燃时间均为0 s,极限氧指数可达到48.2%;TD能够促进阻燃Lyocell织物提前脱水成炭,提高了阻燃Lyocell织物高温区的热稳定性;TD对阻燃Lyocell织物的热释放速率峰值(PHRR)以及总热释放(THR)有良好的抑制效果,经100 g/L TD整理的Lyocell织物的PHRR和THR相比原Lyocell织物分别下降了94.1%和62.4%;TD对Lyocell织物的透气性能影响较小,提高了阻燃Lyocell织物的抗紫外线性能,并对金黄色葡萄球菌和大肠埃希菌的生长起到了一定的抑制效果。

关键词: 阻燃性能, Lyocell织物, 单宁酸, 二乙烯三胺五甲叉膦酸, 生物基阻燃剂, 阻燃织物, 功能纺织品

Abstract:

Objective Lyocell fabrics are used in the clothing and home decoration industries because of their excellent comfort, soft handle and easy coloring. However, the limiting oxygen index (LOI) of Lyocell fabrics is only 19.0%, and it is very easy to be ignited, causing fire accidents. Some of traditional halogenated flame retardants can produce toxic gases and seriously harm to the environment in the process of using, and people are more inclined to choose efficient, green and pollution-free bio-based flame retardants. It is, therefore, necessary to design a biomass flame retardant to improve the flame retardancy of Lyocell fabrics.

Method Tannic acid (TA) and Diethylene triamine pentakis (methyl phosphonic acid) (DTPMPA) were used to prepare flame retardants (named TD). Flame-retardant Lyocell fabrics were prepared by pad-dry-cure finishing method. For comparison,flame-retardant Lyocell fabrics were prepared by 50 g/L and 100 g/L flame-retardant finishing solutions, which were named as L-TDa and L-TDb, respectively. The flame retardancy, mechanical properties and air permeability were investigated for LOI, vertical flame tests (VFT), micro-scale combustion calorimetry test (MCC), universal testing machine and fully automated permeability instrument.

Results The scanning electron microscopy (SEM) results showed that TD adhered to Lyocell fabrics, but the flame retardants did not block the spaces between the fibers, hence the air permeability of flame-retardant Lyocell fabrics was not affected. Due to the lower thermal stability of the flame retardants, TD facilitate the premature dehydration and carbonization of TD, reducing the thermal stability of flame-retardant Lyocell fabrics in low-temperature regions, while improving their thermal stability in high-temperature regions both in nitrogen and air atmosphere. The VFT results indicated that flame-retardant Lyocell fabrics achieved self-extinguishing after ignition, and the after-flame time and the after-glow time were 0 s. The damaged length of L-TDa and L-TDb were only 54 mm and 51 mm, and the LOI values of L-TDa and L-TDb increased to 38.6% and 48.2%. It can be obtained that flame-retardant Lyocell fabrics had better flame retardancy compared with that of control Lyocell fabrics. Meanwhile, the MCC results presented that TD had a significant inhibitory effect on the heat release of flame-retardant Lyocell fabrics. The peak heat release rates of L-TDa and L-TDb were decreased by 76.0% and 94.1% compared with that of control Lyocell fabrics. The retention ratios of breaking force in both the warp and weft direction of L-TDa and L-TDb were over 70%, meeting the daily use expectation. The air permeability results indicated that the air permeability of flame-retardant Lyocell fabrics were not negatively affected, but was even enhanced compared with that of control Lyocell fabrics. The results of anti-ultraviolet tests showed that the UVA and UVB of flame-retardant Lyocell fabrics were significantly lower than those of control Lyocell fabrics, having better anti-ultraviolet properties. The antibacterial results showed that the flame-retardant Lyocell fabrics had certain antibacterial effect on S. aureus and E. coli, in which the antibacterial rate of L-TDb to S. aureus and E. coli reached 97.4% and 93.3%, respectively.

Conclusion It can be concluded that TD treatment improved the flame retardancy of Lyocell fabrics and conferred certain antibacterial and anti-ultraviolet properties on Lyocell fabrics. However, the warp and weft breaking force of these flame-retardant Lyocell fabrics had been decreased, calling for further improvement in the future to reduce the damage of flame retardants to the mechanical properties of Lyocell fabrics. Meanwhile, the handle and whiteness of flame-retardant Lyocell fabrics also need to be further studied. Considering the better performance of flame-retardant Lyocell fabrics in VFT and LOI, it can be concluded that phosphorous-containing biomass flame retardants have excellent flame-retardant effect and give Lyocell fabrics better flame retardancy.

Key words: flame retardancy, Lyocell fabric, tannic acid, diethylene triamine pentakis (methyl phosphonic acid), bio-based flame retardant, flame-retardant fabric, functional textile

中图分类号: 

  • TS195.2

表1

阻燃Lyocell织物试样编号"

试样编号 整理液类别 整理液质量浓度/(g·L-1)
L-TDa TD 50
L-TDb TD 100
L-TA TA 50
L-DTPMPA DTPMPA 50

图1

阻燃整理前后Lyocell织物的SEM照片"

图2

阻燃整理前后Lyocell织物在氮气氛围下的TG和DTG曲线"

表2

阻燃整理前后Lyocell织物在氮气氛围下的TG和DTG数据"

样品名称 T5%/
Tmax/
Rmax/
(%·℃-1)
700 ℃时的
残炭量/%
原Lyocell织物 283 353 2.20 9.60
L-TA 262 325 1.16 6.46
L-DTPMPA 206 286 0.46 23.34
L-TDa 200 290 0.47 29.44
L-TDb 205 227 0.38 39.94

表3

阻燃整理前后Lyocell织物在空气氛围下TG和DTG数据"

样品名称 T5%/
Tmax1/
Rmax1/
(%·℃-1)
Tmax2/
Rmax2/
(%·℃-1)
700 ℃时
残炭
量/%
原Lyocell织物 278 337 1.17 477 0.21 1.20
L-TA 221 317 1.02 499 0.17 0.21
L-DTPMPA 207 286 0.48 512 0.24 0.36
L-TDa 213 288 0.46 511 0.25 0.60
L-TDb 205 227 0.38 530 0.25 2.10

图3

阻燃整理前后Lyocell织物在空气氛围下的TG和DTG曲线"

图4

阻燃整理前后Lyocell织物垂直燃烧后的数码照片和残炭SEM照片"

表4

阻燃整理前后Lyocell织物VFT和LOI值测试结果"

样品名称 增重
率/%
续燃时
间/s
阴燃时
间/s
损毁长
度/mm
LOI值/
%
原Lyocell织物 0.0 19 72 300 19.0
L-TA 7.9 0 0 300 19.1
L-DTPMPA 7.5 0 0 92 38.7
L-TDa 8.2 0 0 54 38.6
L-TDb 16.7 0 0 51 48.2
L-TDb(5次水洗) 6.5 0 0 300 25.2

图5

阻燃整理前后Lyocell织物的HRR曲线"

表5

阻燃整理前后Lyocell织物微型量热测试结果"

样品名称 PHRR/
(W·g-1)
TPHRR/
THR/
(kJ·g-1)
残炭
量/%
原Lyocell织物 341 362 21.3 5.0
L-TA 346 327 20.1 7.5
L-DTPMPA 90 276 4.6 35.0
L-TDa 82 289 8.7 43.2
L-TDb 20 203 8.0 44.7

图6

阻燃整理前后Lyocell织物的断裂强力"

图7

阻燃整理前后Lyocell织物的透气率"

表6

阻燃整理前后Lyocell织物的紫外线透过率和UPF值"

样品名称 透过率/% UPF值
UVA UVB
原Lyocell织物 10.98 6.35 13
L-TA 2.93 1.38 63
L-DTPMPA 9.68 5.25 16
L-TDa 4.13 2.71 59
L-TDb 3.23 2.16 74

图8

阻燃整理前后Lyocell织物对金黄色葡萄球菌和大肠埃希菌的抑菌效果"

[1] WANG X, WANG S H, LI Y Y, et al. Preparation and properties of low fibrillated antibacterial lyocell fiber[J]. Arabian Journal of Chemistry, 2024. DOI: 10.1016/j.arabjc.2024.105658.
[2] 张慧丹, 余琴. 莱赛尔面料的舒适性评价分析[J]. 棉纺织技术, 2022, 50(8): 61-64.
ZHANG Huidan, YU Qin. Evaluation and analysis of lyocell fabric comfort property[J]. Cotton Textile Technology, 2022, 50(8): 61-64.
[3] ZHAO J Y, XIAO M Y, JIANG L N, et al. Fabricating of flame retardant and antibacterial lyocell fabrics through the finishing of phosphorus and nitrogen-containing flame retardant and coating of copper nanoparticles[J]. Cellulose, 2024, 31(4): 2667-2683.
[4] TAIB M N A M, ANTOV P, SAVOV V, et al. Current progress biopolymer-based flame retardant[J]. Polymer Degradation and Stability, 2022. DOI: 10.1016/j.polymdegradstab.2022.110153.
[5] 李平, 朱平, 刘云. 壳聚糖基膨胀阻燃涤纶/棉混纺织物的制备及性能[J]. 纺织学报, 2024, 45(2): 162-170.
LI Ping, ZHU Ping, LIU Yun. Preparation and properties of flame-retardant polyester-cotton fabrics with chitosan-based intumescent flame retardant system[J]. Journal of Textile Research, 2024, 45(2): 162-170.
[6] 白志鹏, 许兰娟, 蔡颖辉, 等. 无卤阻燃剂阻燃机理及研究进展[J]. 化工新型材料, 2024, 52(S2): 32-36.
BAI Zhipeng, XU Lanjuan, CAI Yinghui, et al. Flame retardant mechanism and research progress of halogen-free flame retardants[J]. New Chemical Materials, 2024, 52(S2): 32-36.
[7] KUKLA P, GREINER L, EIBL S, et al. Novel phosphorus-containing silazanes as flame retardants in epoxy resins[J]. Reactive & Functional Polymers, 2022. DOI: 10.1016/j.reactfunctpolym.2021.105120.
[8] 吴义迎, 吴凡, 王兴龙, 等. 有机磷系阻燃剂的研究现状及展望[J]. 山东化工, 2022, 51(18): 87-89.
WU Yiying, WU Fan, WANG Xinglong, et al. Research status and prospect of phosphorus flame retardants[J]. Shandong Chemical Industry, 2022, 51(18): 87-89.
[9] 刘慧, 李平, 朱平, 等. γ-脲基丙基三乙氧基硅烷/苯基膦酸阻燃抗菌棉织物的制备及其性能[J]. 纺织学报, 2024, 45(8): 205-214.
LIU Hui, LI Ping, ZHU Ping, et al. Preparation and properties of flame retardant and antibacterial cotton fabrics treated by γ-urea-propyltriethoxysilane/phenylphosphonic acid[J]. Journal of Textile Research, 2024, 45(8): 205-214.
[10] SONG W M, FAN R Y, ZHANG L Y, et al. Improvement of fire safety for viscose fabrics based on phytic acid modified tea polyphenols complexed iron ions[J]. International Journal of Biological Macromolecules, 2024. DOI: 10.1016/j.ijbiomac.2024.135981.
[11] WANG B H, ZHANG L Y, SONG W M, et al. Alkaline amino acid modification based on biological phytic acid for preparing flame-retardant and antibacterial cellulose-based fabrics[J]. International Journal of Biological Macromolecules, 2024. DOI: 10.1016/j.ijbiomac.2024.134002.
[12] SUN Y, YANG J X, ZHANG X, et al. Anti-ultraviolet and semi-durable flame-retardant viscose fabrics fabricated by modified tea polyphenols[J]. International Journal of Biological Macromolecules, 2025. DOI: 10.1016/j.ijbiomac.2024.138572.
[13] 蒋琦, 刘云, 朱平. 茶多酚基阻燃/防紫外线棉织物的制备及其性能[J]. 纺织学报, 2023, 44(2): 222-229.
JIANG Qi, LIU Yun, ZHU Ping. Preparation and properties of flame retardant/anti-ultraviolet cotton fabrics with tea polyphenol based flame retardants[J]. Journal of Textile Research, 2023, 44(2): 222-229.
[14] DUVAL A, COUTURE G, CAILLOL S, et al. Biobased and aromatic reversible thermoset networks from condensed tannins via the diels-alder reaction[J]. ACS Sustainable Chemistry & Engineering, 2016, 5(1): 1199-1207.
[15] LV G X, JENSEN E, SHAN N S, et al. Effect of aromatic/aliphatic structure and cross-linking density on the thermal conductivity of epoxy resins[J]. ACS Applied Polymer Materials, 2021, 3(3): 1555-1562.
[16] WANG Z H, ZHANG A N, LIU B W, et al. Durable flame-retardant cotton fabrics with tannic acid complexed by various metal ions[J]. Polymer Degradation and Stability, 2022. DOI: 10.1016/j.polymdegradstab.2022.109997.
[17] LUO X L, MA Y N, CHEN H, et al. Highly fireproof, antimicrobial and UV-resistant cotton fabric functionalized with biomass tannic acid and phytic acid[J]. Journal of Materials Science, 2022, 57(30): 14528-14542.
[18] XIAO M Y, GUO Y B, ZHANG J Y, et al. Diethylene triamine penta methylene phosphonic acid encountered silver ions: a convenient method for preparation of flame retardant and antibacterial lyocell fabric[J]. Cellulose, 2021, 28(11): 7465-7481.
[19] 房孝栋, 吴明生. 无卤氮磷系阻燃剂对阻燃三元乙丙橡胶胶料性能的影响[J]. 橡胶工业, 2023, 70(3): 182-188.
FANG Xiaodong, WU Mingsheng. Effect of halogen-free nitrogen phosphorus flame retardants on properties of EPDM compounds[J]. China Rubber Industry, 2023, 70(3): 182-188.
[20] SONG W M, ZHANG L Y, LI P, et al. The fabrication of flame-retardant viscose fabrics with phytic acid-based flame retardants: balancing efficient flame retardancy and tensile strength[J]. International Journal of Biological Macromolecules, 2024. DOI: 10.1016/j.ijbiomac.2024.129596.
[21] LOBIUC A, PAVAL N E, MANGALAGIU I I, et al. Future antimicrobials: natural and functionalized phenolics[J]. Molecules, 2023. DOI: 10.3390/molecules28031114.
[1] 陈展毓, 俞森龙, 周家良, 朱丽萍, 周哲, 相恒学, 朱美芳. 有机膦酸改性聚乳酸织物的制备及其性能[J]. 纺织学报, 2025, 46(08): 154-163.
[2] 朱雷, 李晓俊, 程春祖, 徐纪刚, 杜心宇. 四硼酸钠/单宁酸交联对海藻酸钙纤维结构与性能的影响[J]. 纺织学报, 2025, 46(07): 28-36.
[3] 赵祥璐, 方寅春, 李伟. 超疏水自清洁结构色织物的制备及其性能[J]. 纺织学报, 2025, 46(04): 154-161.
[4] 郭洁琰, 徐颖雯, 丁放, 任学宏. 卤胺抗菌剂及其改性纤维的应用研究进展[J]. 纺织学报, 2025, 46(04): 255-263.
[5] 黄春月, 黄鑫, 杜海娟, 徐文杰, 杨雪梅, 万科研, 李旭, 高杰. 钼氧簇复合物整理剂制备及其整理棉织物的防紫外线性能[J]. 纺织学报, 2025, 46(04): 138-145.
[6] 廖喜林, 曾媛, 刘淑萍, 李亮, 李淑静, 刘让同. 磷/氮/硅复配协效阻燃棉织物制备及其性能[J]. 纺织学报, 2025, 46(03): 151-157.
[7] 郭庆, 毛阳顺, 任亚杰, 刘济民, 王怀芳, 朱平. 基于漆酶一步催化法的羊毛织物原位染色及阻燃功能化[J]. 纺织学报, 2025, 46(02): 161-169.
[8] 张洁, 郭鑫源, 关晋平, 程献伟, 陈国强. 磷/氮阻燃剂原位沉积对棉织物的耐久阻燃改性[J]. 纺织学报, 2025, 46(02): 180-187.
[9] 宋婉萌, 王宝弘, 孙宇, 杨家祥, 刘云, 王玉忠. 兼具力学性能与高效阻燃性能粘胶织物的制备及其性能[J]. 纺织学报, 2025, 46(02): 188-196.
[10] 李鑫, 叶培培, 赵晓曼, 王鸿博, 杨国荣, 洪剑寒. 氧化铋-硅橡胶基X射线防护织物的制备及性能[J]. 纺织学报, 2025, 46(02): 227-235.
[11] 肖鑫, 李伟, 卢润, 姜会钰, 李青. 等离子体协同过氧化氢活化体系对纯棉水刺非织造布的练漂处理[J]. 纺织学报, 2024, 45(12): 118-127.
[12] 黄田田, 宋媛珠, 赵斌. 单宁酸基阻燃多功能涂层及表面整理Lyocell织物[J]. 纺织学报, 2024, 45(12): 152-158.
[13] 关玉, 王冬, 郭一凡, 付少海. MoS2/MXene阻燃气敏棉织物的制备及其性能[J]. 纺织学报, 2024, 45(12): 159-165.
[14] 刘慧, 李平, 朱平, 刘云. γ-脲基丙基三乙氧基硅烷/苯基膦酸阻燃抗菌棉织物的制备及其性能[J]. 纺织学报, 2024, 45(08): 205-214.
[15] 徐豫松, 周杰, 甘佳怡, 张涛, 张先明. 含磷氮水性聚氨酯的制备及其在涤纶织物阻燃整理中应用[J]. 纺织学报, 2024, 45(07): 112-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!