纺织学报 ›› 2025, Vol. 46 ›› Issue (09): 74-83.doi: 10.13475/j.fzxb.20241003701

• 纤维材料 • 上一篇    下一篇

银纳米线/聚氨酯纳米纤维膜柔性传感器制备及其性能

傅林, 钱建华(), 单江音, 林灵, 卫梦蓉, 翁可欣, 吴晓睿   

  1. 浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
  • 收稿日期:2024-10-18 修回日期:2025-05-06 出版日期:2025-09-15 发布日期:2025-11-12
  • 通讯作者: 钱建华(1973—),男,教授,硕士。主要研究方向为功能性纤维材料和膜过滤材料。E-mail qianjianhua@zstu.edu.cn
  • 作者简介:傅林(2000—),男,硕士生。主要研究方向为新型纤维材料。
  • 基金资助:
    浙江省大学生科技创新活动计划(2024R406A008)

Preparation and performance of silver nanowires/polyurethane nanofiber membrane flexible sensor

FU Lin, QIAN Jianhua(), SHAN Jiangyin, LIN Ling, WEI Mengrong, WENG Kexin, WU Xiaorui   

  1. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2024-10-18 Revised:2025-05-06 Published:2025-09-15 Online:2025-11-12

摘要: 为拓宽银纳米线(AgNWs)在柔性传感器领域的应用,以聚氨酯(TPU)纳米纤维膜为基底,将银纳米线喷涂在TPU纳米纤维膜上,制备出一种可拉伸柔性传感器,具有灵敏度高、电导性能的线性度稳定、响应速度快的特征。首先,用一步多元醇法制备高长径比的银纳米线,分析影响银纳米线形貌的原因,测试在最佳实验条件下合成的AgNWs的外观形貌、化学结构、结晶等性能;其次,通过静电纺丝制备TPU纳米纤维膜。然后将AgNWs涂覆在TPU纳米纤维膜的表面,再覆盖1层TPU纳米纤维膜,得到“三明治”结构的柔性薄膜传感器;最后,对传感器性能进行测试。结果表明:合成的AgNWs长度为60~150 μm,直径为60~120 nm,平均长径比超过1 000,最大可达1 921;传感器拥有低初始电阻(36.1 Ω),高应变范围(0%~130%)和高灵敏度(GF),应变在0%~10%时,GF为180; 应变在10%~110%时,GF为610;应变在115%~130%时,GF为1 270,响应时间为221 ms,且其在0%~10%拉伸应变重复3 000次后保持相对电阻基本不变,在智能可穿戴设备等领域具有广泛的应用前景。

关键词: 柔性传感器, 银纳米线, 聚氨酯纳米纤维膜, 灵敏度, 智能纺织品

Abstract:

Objective Flexible sensors have shown broad development prospects in fields such as electronic skin, human-computer interaction, soft robots, human motion monitoring, and smart wearables due to their characteristics of light weight, bendability, wearability, low cost, implantability, and high sensitivity. The emergence of nanomaterials has created conditions for the development of flexible sensors. Research shows that combining flexible polymer substrates with emerging conductive fillers is a common strategy for preparing flexible smart electronic fiber devices. The sensor proposed is composed of high aspect ratio AgNWs combined with a highly elastic and stretchable TPU substrate, forming a perfect conductive network. Their electrical conductivity, sensitivity and cycling stability were studied.

Method Silver nanowires are prepared by one-step polyol method. Factors affecting the morphology of silver nanowires are analyzed. The appearance morphology, chemical structure, crystallization properties and other properties of AgNWs synthesized under the optimal conditions are tested. Through electrospinning, TPU nanofiber membrane is prepared. The TPU film is fixed in a vessel. The prepared AgNWs are coated on one side of the TPU film by dipping method. After the ethanol solution volatilizes, a transparent conductive film with a silver nanowire network structure is formed on the surface of the TPU film. Two TPU films are attached and encapsulated face to face to obtain a flexible film sensor with a ″sandwich″ structure. The performance of the developed sensor was evaluated.

Results The solution reacts at 150 ℃ for 7 h, and the silver nitrate solution is dropped into the solution at a speed of 1.5 mL/min and stirred for 7 h to reach the optimal morphology and aspect ratio of the generated silver nanowires. Their length is 60-150 μm, the diameter is 60-120 nm, and the average aspect ratio exceeds 1 000 with the maximum reaching 1 921. The TPU/AgNWs/TPU sensor is a flexible strain resistance sensor with low initial resistance (36.1 Ω), high strain range (ε=0%-130%), high sensitivity (ε=0%-10%, GF=180; ε=10%-110%, GF=610; ε=115%-130%, GF=1 270), and a fast response time of 220 ms). At the same tensile speed and different strains (25%, 50%, 75%, 100%), the resistance change remains highly consistent, and the resistance is proportional to the strain size, indicating that the sensor has the accuracy and repeatability of sensing under different strains. When the strain is the same (50%) and the tensile speed is different, the resistance change is highly consistent, and the resistance changes slightly under different speeds, indicating that the resistance response has good independence from the stretching speed. In the strain range of 0%-10%, after 3 000 tension cycles, the resistance change rate is between 0%-2%, indicating good cyclic stability and strain sensitivity.

Conclusion Through the research on the process parameters during the growth of silver nanowires (AgNWs) using the polyol method, silver nanowires with excellent performance were successfully prepared. A flexible sensor was fabricated by combining a polyurethane (TPU) film prepared via electrospinning technology with AgNWs, which significantly enhanced the flexibility, adhesiveness, and wear resistance of the material. Thanks to the structural design of TPU/AgNWs/TPU, the sensor effectively addresses problems with the conventional sensors, such as significant performance differences under different strains, obvious interference from the stretching rate, or substantial performance degradation after cyclic use.

Key words: flexible sensor, silver nanowire, polyurethane nanofiber membrane, sensitivity, smart textiles

中图分类号: 

  • TQ340

图1

TPU/AgNWs/TPU传感器"

图2

不同倍数下静电纺丝TPU纤维膜的SEM照片"

图3

相同温度下不同反应时间制备银纳米线的SEM照片"

图4

硝酸银溶液不同滴加速度下SEM照片"

图5

不同倍数下AgNWs扫描电镜照片"

图6

AgNWs表面状态及二维点阵组成的电子衍射图样"

图7

银纳米线的UV-vis 光谱"

图8

AgNWs的XRD图谱与Ag的标准XRD图谱"

图9

TPU/AgNWs/TPU传感器的循环稳定性"

图10

TPU/AgNWs/TPU传感器拉伸力学性能"

图11

TPU/AgNWs/TPU传感器的拉伸电阻变化率曲线"

图12

0%~10%及25%~175%拉伸应变下的电压-电流曲线"

图13

传感器的动态拉伸曲线"

[1] LI Deke, FAN Yufeng, HAN Guocai, et al. Superomniphobic silk fibroin/Ag nanowires membrane for flexible and transparent electronic sensor[J]. ACS Applied Materials & Interfaces, 2020, 12 (8): 10039-10049.
[2] 汪宇佳, 王怡, 王雅思, 等. 基于家蚕平板丝结构的柔性压力传感器制备及其传感性能[J]. 纺织学报, 2024, 45(9): 10-17.
WANG Yujia, WANG Yi, WANG Yasi, et al. Preparation and sensing performance of flexible pressure sensor based on natural flat silk cocoon structure[J]. Journal of Textile Research, 2024, 45(9): 10-17.
[3] ZHOU K, ZHAO Y, SUN X, et al. Ultra-stretchable triboelectric nanogenerator as high-sensitive and self-powered electronic skins for energy harvesting and tactile sensing[J]. Nano Energy, 2020, 70: 104546.
doi: 10.1016/j.nanoen.2020.104546
[4] BU Y, SHEN T, YANG W. et al. Ultrasensitive strain sensor based on superhydrophobic microcracked conductive Ti3C2Tx MXene/paper for human-motion monitoring and e-skin[J]. Science Bulletin (Beijing), 2021, 66(18):1849-1857.
[5] ZHENG Q, LEE J-H, SHEN X, et al. Graphene-based wearable piezoresistive physical sensors[J]. Materials Today, 2020, 36:158-179.
doi: 10.1016/j.mattod.2019.12.004
[6] QU X, ZHAO Y, CHEN Z, et al. Thermoresponsive lignin-reinforced poly (ionic liquid) hydrogel wireless strain sensor[J]. Research, 2021.DOI:10.34133/2021/9845482.
[7] 卢道坤, 王仕飞, 董倩. 基于MXene的导电织物构筑及其多功能应用[J]. 纺织学报, 2024, 45(9): 137-145.
LU Daokun, WANG Shifei, DONG Qian, et al. Construction of MXene based conductive fabrics and their multifunctional applications[J]. Journal of Textile Research, 2024, 45(9): 137-145.
doi: 10.1177/004051757504500210
[8] CAO Y, GUO Y, CHEN Z, et al. Highly sensitive self-powered pressure and strain sensor based on crumpled MXene film for wireless human motion detection[J]. Nano Energy, 2022, 92, 106689.
doi: 10.1016/j.nanoen.2021.106689
[9] HUANG Chenyang, CHIU Chihwei. Facile fabrication of a stretchable and flexible nanofiber carbon film-sensing electrode by electrospinning and its application in smart clothing for ECG and EMG monitoring[J]. ACS Applied Electronic Materials, 2021, 3(2):676-686.
doi: 10.1021/acsaelm.0c00841
[10] WANG Y, HAO J, HUANG Z, et al. Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring[J]. Carbon, 2018, 126:360-371.
doi: 10.1016/j.carbon.2017.10.034
[11] CHEN Z H, ZENG M, LI L, et al. Research progress of conductive polymer/polyurethane composites[J]. Modern Chemical Industry, 2020, 40(5): 73-76, 81.
[12] BAE S, KIM S J, SHIN D, et al. Towards industrial applications of graphene electrodes[J]. Phys Scr, 2010: 32-32.
[13] LI Q, LI K, FAN H, et al. Reduced graphene oxide functionalized stretchable and multicolor electrothermal chromatic fibers[J]. Journal of Materials Chemistry C, 2017, 5(44): 11448-11453.
doi: 10.1039/C7TC02471A
[14] LI Q. Structural design and function control of flexible electro-thermochromic devices based on low-dimensional carbon materials[D]. Shanghai: Donghua University, 2018:7-10.
[15] WANG W L, WANG J N, ZHAO X. Preparation of carbon nanotube/polyurethane composite film and its tensile sensing properties[J]. Journal of Donghua University, 2021, 47(2): 12-18.
[16] 吴颖欣, 胡铖烨, 周筱雅, 等. 柔性可穿戴氨纶/聚苯胺/聚氨酯复合材料的应变传感性能[J]. 纺织学报, 2020, 41(4):21-25.
WU Yingxin, HU Chengye, ZHOU Xiaoya, et al. Strain sensing properties of flexible wearable spandex/polyaniline/ polyurethane composites[J]. Journal of Textile Research, 2020, 41(4): 21-25.
[17] XIE L P, XIANG D L, WANG R Q, et al. Research progress of flexible wearable stress sensors[J]. Science Technology and Engineering, 2021, 21(20): 8301-8309.
[18] WU M, LI Y, AN N, et al. Applied voltage and near-infrared light enable healing of superhydrophobicity loss caused by severe scratches in conductive superhydrophobic films[J]. Advanced Functional Materials, 2016, 26(37): 6777-6784.
doi: 10.1002/adfm.v26.37
[19] GUO Y. Wearable sensors to monitor plant health[J]. Nature Food, 2023, 4(5): 350-350.
doi: 10.1038/s43016-023-00764-3 pmid: 37225905
[20] SU D, HUANG X. Facile fabrication of highly conductive tracks using long silver nanowires and graphene composite[J]. RSC Advances, 2018, 8(32): 11774-17739.
[21] FU D, YANG R, WANG Y, et al. Silver nanowire synthesis and applications in composites: progress and prospects[J]. Advanced Materials Technologies, 2022, 7(11): 2200027.
doi: 10.1002/admt.v7.11
[22] CHEN T R, WANG H F, YANG H, et al. Synthesis and characterizing of high aspect ratio silver nanowires by polyol process[J]. Key Engineering Materials, 2018, 4527: 75-84.
[23] GOU L F, CHIPARA M, ZALESKI J M. Convenient, rapid synthesis of Ag nanowires[J]. Chemistry of Materials, 2007, 19(7): 1755-1760.
doi: 10.1021/cm070160a
[24] 杨镕琛, 张庆华, 杜琬婷, 等. AgNWs/PDMS柔性应变传感器的研制[J]. 合成技术及应用, 2021, 36(1):17-22.
YANG Rongchen, ZHANG Qinghua, DU Wanting, et al. Development of AgNWs/PDMS flexible strain sensor[J]. Synthetic Technology and Application, 2021, 36(1): 17-22.
[25] 聂笑笑, 张溪文. 电纺制备银纳米线(AgNWs)与聚偏氟乙烯(PVDF)复合纳米纤维[J]. 材料科学与工程学报, 2020, 38(5):746-750.
NIE Xiaoxiao, ZHANG Xiwen. Preparation of silver nanowires (AgNWs)/polyvinylidene fluoride (PVDF) composite nanofibers by electrospinning[J]. Journal of Materials Science and Engineering, 2020, 38(5): 746-750.
[26] 周洋, 申志浩, 陈瑨, 等. 柔性AgNWs/PEDOT:PSS-PET透明导电薄膜的制备与性能[J]. 塑料, 2023, 52(5):65-68,117.
ZHOU Yang, SHEN Zhihao, CHEN Jin, et al. Preparation and properties of flexible AgNWs/PEDOT:PSS-PET transparent conductive films[J]. China Plastics, 2023, 52(5): 65-68,117.
[1] 赵捷清, 王瑧, 秦孝天, 王成成, 张丽平. 模拟绿叶颜色变化的温致变色织物制备及其性能[J]. 纺织学报, 2025, 46(09): 19-26.
[2] 权英, 张爱琴, 张曼, 刘淑强, 张钰晶. 基于三维编织结构的柔性应变传感器制备及其性能[J]. 纺织学报, 2025, 46(08): 136-144.
[3] 刘烨, 王俊胜, 金星. 消防员个人防护装备用智能纺织品研究进展[J]. 纺织学报, 2025, 46(05): 105-115.
[4] 张金芹, 李晶, 肖明, 毕曙光, 冉建华. 聚苯乙烯/还原氧化石墨烯微球传感电热织物的自组装法制备[J]. 纺织学报, 2025, 46(05): 202-213.
[5] 陈枭, 赵继忠, 董凯. 基于接触起电效应的新型机电转化纤维性能提升策略[J]. 纺织学报, 2025, 46(05): 41-48.
[6] 韩力杰, 刘樊, 张其冲. 纤维状水系锌离子电池的研究进展与展望[J]. 纺织学报, 2025, 46(05): 59-69.
[7] 陈琪, 武萁, 徐锦琳, 贾浩. 织物基图案化导电矩阵的自组装成形及传感应用[J]. 纺织学报, 2025, 46(02): 218-226.
[8] 梁雯宇, 季东晓, 覃小红. 微纳米纤维包芯纱制备及其电致发光性能[J]. 纺织学报, 2025, 46(01): 42-51.
[9] 刘霞, 吴改红, 闫子豪, 王彩柳. 智能相变调温聚乳酸纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 18-24.
[10] 张曼, 权英, 冯宇, 李甫, 张爱琴, 刘淑强. 纺织基可穿戴柔性应变传感器的研究进展[J]. 纺织学报, 2024, 45(12): 225-233.
[11] 史雅楠, 马颜雪, 樊平, 薛文良, 李毓陵. 织边结构弹性传感机织带的制备及其传感性能影响因素[J]. 纺织学报, 2024, 45(11): 114-120.
[12] 汪宇佳, 王怡, 王雅思, 代方银, 李智. 基于家蚕平板丝结构的柔性压力传感器制备及其传感性能[J]. 纺织学报, 2024, 45(09): 10-17.
[13] 吴帆, 梁凤玉, 肖奕葶, 杨智博, 王文婷, 樊威. 聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸基复合导电纤维的制备及其性能[J]. 纺织学报, 2024, 45(08): 99-106.
[14] 杨辰晖, 陈檬迪, 关艳, 肖红. 基于光栅动画图案合成光纤织物的设计及其实现[J]. 纺织学报, 2024, 45(07): 40-46.
[15] 卢妍, 洪岩, 方剑. 智能背景下机器学习在柔性应变传感器中的应用研究进展[J]. 纺织学报, 2024, 45(05): 228-238.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!