纺织学报 ›› 2025, Vol. 46 ›› Issue (09): 74-83.doi: 10.13475/j.fzxb.20241003701
傅林, 钱建华(
), 单江音, 林灵, 卫梦蓉, 翁可欣, 吴晓睿
FU Lin, QIAN Jianhua(
), SHAN Jiangyin, LIN Ling, WEI Mengrong, WENG Kexin, WU Xiaorui
摘要: 为拓宽银纳米线(AgNWs)在柔性传感器领域的应用,以聚氨酯(TPU)纳米纤维膜为基底,将银纳米线喷涂在TPU纳米纤维膜上,制备出一种可拉伸柔性传感器,具有灵敏度高、电导性能的线性度稳定、响应速度快的特征。首先,用一步多元醇法制备高长径比的银纳米线,分析影响银纳米线形貌的原因,测试在最佳实验条件下合成的AgNWs的外观形貌、化学结构、结晶等性能;其次,通过静电纺丝制备TPU纳米纤维膜。然后将AgNWs涂覆在TPU纳米纤维膜的表面,再覆盖1层TPU纳米纤维膜,得到“三明治”结构的柔性薄膜传感器;最后,对传感器性能进行测试。结果表明:合成的AgNWs长度为60~150 μm,直径为60~120 nm,平均长径比超过1 000,最大可达1 921;传感器拥有低初始电阻(36.1 Ω),高应变范围(0%~130%)和高灵敏度(GF),应变在0%~10%时,GF为180; 应变在10%~110%时,GF为610;应变在115%~130%时,GF为1 270,响应时间为221 ms,且其在0%~10%拉伸应变重复3 000次后保持相对电阻基本不变,在智能可穿戴设备等领域具有广泛的应用前景。
中图分类号:
| [1] | LI Deke, FAN Yufeng, HAN Guocai, et al. Superomniphobic silk fibroin/Ag nanowires membrane for flexible and transparent electronic sensor[J]. ACS Applied Materials & Interfaces, 2020, 12 (8): 10039-10049. |
| [2] | 汪宇佳, 王怡, 王雅思, 等. 基于家蚕平板丝结构的柔性压力传感器制备及其传感性能[J]. 纺织学报, 2024, 45(9): 10-17. |
| WANG Yujia, WANG Yi, WANG Yasi, et al. Preparation and sensing performance of flexible pressure sensor based on natural flat silk cocoon structure[J]. Journal of Textile Research, 2024, 45(9): 10-17. | |
| [3] |
ZHOU K, ZHAO Y, SUN X, et al. Ultra-stretchable triboelectric nanogenerator as high-sensitive and self-powered electronic skins for energy harvesting and tactile sensing[J]. Nano Energy, 2020, 70: 104546.
doi: 10.1016/j.nanoen.2020.104546 |
| [4] | BU Y, SHEN T, YANG W. et al. Ultrasensitive strain sensor based on superhydrophobic microcracked conductive Ti3C2Tx MXene/paper for human-motion monitoring and e-skin[J]. Science Bulletin (Beijing), 2021, 66(18):1849-1857. |
| [5] |
ZHENG Q, LEE J-H, SHEN X, et al. Graphene-based wearable piezoresistive physical sensors[J]. Materials Today, 2020, 36:158-179.
doi: 10.1016/j.mattod.2019.12.004 |
| [6] | QU X, ZHAO Y, CHEN Z, et al. Thermoresponsive lignin-reinforced poly (ionic liquid) hydrogel wireless strain sensor[J]. Research, 2021.DOI:10.34133/2021/9845482. |
| [7] | 卢道坤, 王仕飞, 董倩. 基于MXene的导电织物构筑及其多功能应用[J]. 纺织学报, 2024, 45(9): 137-145. |
|
LU Daokun, WANG Shifei, DONG Qian, et al. Construction of MXene based conductive fabrics and their multifunctional applications[J]. Journal of Textile Research, 2024, 45(9): 137-145.
doi: 10.1177/004051757504500210 |
|
| [8] |
CAO Y, GUO Y, CHEN Z, et al. Highly sensitive self-powered pressure and strain sensor based on crumpled MXene film for wireless human motion detection[J]. Nano Energy, 2022, 92, 106689.
doi: 10.1016/j.nanoen.2021.106689 |
| [9] |
HUANG Chenyang, CHIU Chihwei. Facile fabrication of a stretchable and flexible nanofiber carbon film-sensing electrode by electrospinning and its application in smart clothing for ECG and EMG monitoring[J]. ACS Applied Electronic Materials, 2021, 3(2):676-686.
doi: 10.1021/acsaelm.0c00841 |
| [10] |
WANG Y, HAO J, HUANG Z, et al. Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring[J]. Carbon, 2018, 126:360-371.
doi: 10.1016/j.carbon.2017.10.034 |
| [11] | CHEN Z H, ZENG M, LI L, et al. Research progress of conductive polymer/polyurethane composites[J]. Modern Chemical Industry, 2020, 40(5): 73-76, 81. |
| [12] | BAE S, KIM S J, SHIN D, et al. Towards industrial applications of graphene electrodes[J]. Phys Scr, 2010: 32-32. |
| [13] |
LI Q, LI K, FAN H, et al. Reduced graphene oxide functionalized stretchable and multicolor electrothermal chromatic fibers[J]. Journal of Materials Chemistry C, 2017, 5(44): 11448-11453.
doi: 10.1039/C7TC02471A |
| [14] | LI Q. Structural design and function control of flexible electro-thermochromic devices based on low-dimensional carbon materials[D]. Shanghai: Donghua University, 2018:7-10. |
| [15] | WANG W L, WANG J N, ZHAO X. Preparation of carbon nanotube/polyurethane composite film and its tensile sensing properties[J]. Journal of Donghua University, 2021, 47(2): 12-18. |
| [16] | 吴颖欣, 胡铖烨, 周筱雅, 等. 柔性可穿戴氨纶/聚苯胺/聚氨酯复合材料的应变传感性能[J]. 纺织学报, 2020, 41(4):21-25. |
| WU Yingxin, HU Chengye, ZHOU Xiaoya, et al. Strain sensing properties of flexible wearable spandex/polyaniline/ polyurethane composites[J]. Journal of Textile Research, 2020, 41(4): 21-25. | |
| [17] | XIE L P, XIANG D L, WANG R Q, et al. Research progress of flexible wearable stress sensors[J]. Science Technology and Engineering, 2021, 21(20): 8301-8309. |
| [18] |
WU M, LI Y, AN N, et al. Applied voltage and near-infrared light enable healing of superhydrophobicity loss caused by severe scratches in conductive superhydrophobic films[J]. Advanced Functional Materials, 2016, 26(37): 6777-6784.
doi: 10.1002/adfm.v26.37 |
| [19] |
GUO Y. Wearable sensors to monitor plant health[J]. Nature Food, 2023, 4(5): 350-350.
doi: 10.1038/s43016-023-00764-3 pmid: 37225905 |
| [20] | SU D, HUANG X. Facile fabrication of highly conductive tracks using long silver nanowires and graphene composite[J]. RSC Advances, 2018, 8(32): 11774-17739. |
| [21] |
FU D, YANG R, WANG Y, et al. Silver nanowire synthesis and applications in composites: progress and prospects[J]. Advanced Materials Technologies, 2022, 7(11): 2200027.
doi: 10.1002/admt.v7.11 |
| [22] | CHEN T R, WANG H F, YANG H, et al. Synthesis and characterizing of high aspect ratio silver nanowires by polyol process[J]. Key Engineering Materials, 2018, 4527: 75-84. |
| [23] |
GOU L F, CHIPARA M, ZALESKI J M. Convenient, rapid synthesis of Ag nanowires[J]. Chemistry of Materials, 2007, 19(7): 1755-1760.
doi: 10.1021/cm070160a |
| [24] | 杨镕琛, 张庆华, 杜琬婷, 等. AgNWs/PDMS柔性应变传感器的研制[J]. 合成技术及应用, 2021, 36(1):17-22. |
| YANG Rongchen, ZHANG Qinghua, DU Wanting, et al. Development of AgNWs/PDMS flexible strain sensor[J]. Synthetic Technology and Application, 2021, 36(1): 17-22. | |
| [25] | 聂笑笑, 张溪文. 电纺制备银纳米线(AgNWs)与聚偏氟乙烯(PVDF)复合纳米纤维[J]. 材料科学与工程学报, 2020, 38(5):746-750. |
| NIE Xiaoxiao, ZHANG Xiwen. Preparation of silver nanowires (AgNWs)/polyvinylidene fluoride (PVDF) composite nanofibers by electrospinning[J]. Journal of Materials Science and Engineering, 2020, 38(5): 746-750. | |
| [26] | 周洋, 申志浩, 陈瑨, 等. 柔性AgNWs/PEDOT:PSS-PET透明导电薄膜的制备与性能[J]. 塑料, 2023, 52(5):65-68,117. |
| ZHOU Yang, SHEN Zhihao, CHEN Jin, et al. Preparation and properties of flexible AgNWs/PEDOT:PSS-PET transparent conductive films[J]. China Plastics, 2023, 52(5): 65-68,117. |
| [1] | 赵捷清, 王瑧, 秦孝天, 王成成, 张丽平. 模拟绿叶颜色变化的温致变色织物制备及其性能[J]. 纺织学报, 2025, 46(09): 19-26. |
| [2] | 权英, 张爱琴, 张曼, 刘淑强, 张钰晶. 基于三维编织结构的柔性应变传感器制备及其性能[J]. 纺织学报, 2025, 46(08): 136-144. |
| [3] | 刘烨, 王俊胜, 金星. 消防员个人防护装备用智能纺织品研究进展[J]. 纺织学报, 2025, 46(05): 105-115. |
| [4] | 张金芹, 李晶, 肖明, 毕曙光, 冉建华. 聚苯乙烯/还原氧化石墨烯微球传感电热织物的自组装法制备[J]. 纺织学报, 2025, 46(05): 202-213. |
| [5] | 陈枭, 赵继忠, 董凯. 基于接触起电效应的新型机电转化纤维性能提升策略[J]. 纺织学报, 2025, 46(05): 41-48. |
| [6] | 韩力杰, 刘樊, 张其冲. 纤维状水系锌离子电池的研究进展与展望[J]. 纺织学报, 2025, 46(05): 59-69. |
| [7] | 陈琪, 武萁, 徐锦琳, 贾浩. 织物基图案化导电矩阵的自组装成形及传感应用[J]. 纺织学报, 2025, 46(02): 218-226. |
| [8] | 梁雯宇, 季东晓, 覃小红. 微纳米纤维包芯纱制备及其电致发光性能[J]. 纺织学报, 2025, 46(01): 42-51. |
| [9] | 刘霞, 吴改红, 闫子豪, 王彩柳. 智能相变调温聚乳酸纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 18-24. |
| [10] | 张曼, 权英, 冯宇, 李甫, 张爱琴, 刘淑强. 纺织基可穿戴柔性应变传感器的研究进展[J]. 纺织学报, 2024, 45(12): 225-233. |
| [11] | 史雅楠, 马颜雪, 樊平, 薛文良, 李毓陵. 织边结构弹性传感机织带的制备及其传感性能影响因素[J]. 纺织学报, 2024, 45(11): 114-120. |
| [12] | 汪宇佳, 王怡, 王雅思, 代方银, 李智. 基于家蚕平板丝结构的柔性压力传感器制备及其传感性能[J]. 纺织学报, 2024, 45(09): 10-17. |
| [13] | 吴帆, 梁凤玉, 肖奕葶, 杨智博, 王文婷, 樊威. 聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸基复合导电纤维的制备及其性能[J]. 纺织学报, 2024, 45(08): 99-106. |
| [14] | 杨辰晖, 陈檬迪, 关艳, 肖红. 基于光栅动画图案合成光纤织物的设计及其实现[J]. 纺织学报, 2024, 45(07): 40-46. |
| [15] | 卢妍, 洪岩, 方剑. 智能背景下机器学习在柔性应变传感器中的应用研究进展[J]. 纺织学报, 2024, 45(05): 228-238. |
|
||