纺织学报 ›› 2025, Vol. 46 ›› Issue (09): 84-93.doi: 10.13475/j.fzxb.20241106601

• 纤维材料 • 上一篇    下一篇

棉基生物炭-ZIF-L(Zn)-壳聚糖/聚丙烯复合膜的制备及其吸附-光催化性能

王泓力1,2, 张辉1,2(), 刘建宇1,2, 尉海泽1,2, 张雅宁3, 王丽丽3, 许学潮4   

  1. 1.西安工程大学 功能性纺织材料及制品教育部重点实验室, 陕西 西安 710048
    2.西安工程大学 纺织科学与工程学院, 陕西 西安 710048
    3.内蒙古沣晟泰新材料有限公司 研发中心, 内蒙古 包头 014060
    4.信泰(福建)科技有限公司 创新研究院, 福建 晋江 362200
  • 收稿日期:2024-11-27 修回日期:2025-05-09 出版日期:2025-09-15 发布日期:2025-11-12
  • 通讯作者: 张辉(1968—),男,教授,博士。主要研究方向为功能性纺织产品研发。E-mail:hzhangw532@xpu.edu.cn
  • 作者简介:王泓力(2001—),女,硕士生。主要研究方向为纺织材料改性及功能性纺织品研发。
  • 基金资助:
    国家自然科学基金项目(51873169)

Preparation and adsorption-photocatalytic performance of cotton-based biochar-ZIF-L(Zn)-chitosan/polypropylene composite membrane

WANG Hongli1,2, ZHANG Hui1,2(), LIU Jianyu1,2, YU Haize1,2, ZHANG Yaning3, WANG Lili3, XU Xuechao4   

  1. 1. Key Laboratory of Functional Textile Material and Product of Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    3. Research Center, Inner Mongolia Fengshengtai New Material Co., Ltd., Baotou, Inner Mongolia 014060, China
    4. Innovation Research Institute, Sincetech (Fujian) Technology Co., Ltd., Jinjiang, Fujian 362200, China
  • Received:2024-11-27 Revised:2025-05-09 Published:2025-09-15 Online:2025-11-12

摘要: 为提高聚丙烯非织造布的亲水性和污染物去除性能,用于废水中染料和抗生素的去除,以废弃落棉为原料,经煅烧制得具有多孔结构的棉基生物炭(CB),并与二维ZIF-L(Zn)复合,制备出兼具吸附和光催化性能的CB-ZIF-L(Zn)复合粉。通过喷涂技术将该复合粉负载于壳聚糖改性的聚丙烯(CSP)非织造布表面,制得CB-ZIF-L(Zn)-CSP复合膜。采用扫描电子显微镜、X射线衍射、傅里叶变换红外光谱、拉曼光谱及热重分析对膜的微观形貌、结构组成及热稳定性进行表征,并测试其孔径分布和过滤性能。结果表明:CB与ZIF-L(Zn)前驱体的反应顺序对复合粉的结构和性能有显著影响;当CB与ZIF-L(Zn)的质量比为1∶1时,复合粉表现出最优的吸附性能和光催化活性,在可见光照射下循环使用4次,对刚果红(CR)的降解率达87.9%;通过调控模压压力和膜层数,膜的过滤通量和截留性能可实现优化调控;50 MPa模压条件下制备的5层复合膜,在15 L/h泵速下对CR的截留率达100%,重复使用5次后仍保持良好性能。此外,该复合膜对亚甲基蓝(MB)和四环素(TC)同样具有良好的去除效果。CB-ZIF-L(Zn)-CSP复合膜具有优异的污染物去除能力和光催化再生性能,在高效、可持续的废水处理领域展现出广阔应用前景。

关键词: 棉基生物炭, ZIF-L(Zn), 壳聚糖, 聚丙烯复合膜, 吸附性能, 光催化性能, 废水处理

Abstract:

Objective In order to enhance the hydrophilicity and pollutant removal efficiency of polypropylene (PP) nonwoven fabrics, a composite membrane with dual adsorption and photocatalytic functions was developed. The membrane integrates cotton-based biochar, ZIF-L(Zn) and chitosan onto a PP substrate to enable efficient removal of dyes and antibiotics from wastewater. The study emphasizes the potential of combining bio-derived materials with metal-organic frameworks (MOFs) to achieve high-performance membranes for sustainable water purification.

Method Cotton textile waste was pyrolyzed to produce porous cotton-based biochar (CB), which was then combined with two-dimensional ZIF-L(Zn) to obtain a composite powder possessing both adsorption and photocatalytic capabilities. This powder was deposited onto a chitosan-modified PP nonwoven substrate (CSP) by spraying, yielding the CB-ZIF-L(Zn)-CSP composite membrane. The membrane's microstructure, composition, and thermal stability were characterized using scaning electron microsopy(SEM), X-ray diffraction(XRD), Fourier transform intrared (FT-IR) spectroscopy, Raman spectroscopy, and thermogravimetric analysis (TGA). Pore size distribution and filtration performance were systematically evaluated. The influences of precursor mixing order, mass ratios, hot-pressing pressure, and membrane layering on removal efficiency were also investigated.

Results The CB-ZIF-L(Zn)-CSP membranes exhibited strong dye and antibiotic removal capabilities. A 1∶1 mass ratio of CB to ZIF-L(Zn) yielded the optimal performance, achieving a Congo Red (CR) degradation rate of 87.9% under visible light after four reuse cycles. The five-layer membrane prepared under 50 MPa hot-pressing exhibited 100% CR rejection at a flow rate of 15 L/h, with excellent reusability. Additionally, effective removal of methylene blue (MB) and tetracycline (TC) was observed. The reaction sequence of CB and ZIF-L(Zn) precursors played a critical role in determining the microstructure and functional efficiency of the composite. The membrane maintained high performance across multiple cycles, demonstrating excellent stability and regeneration ability.

Conclusion That CB-ZIF-L(Zn)-CSP composite membranes, fabricated via a low-cost and scalable spraying process, offer a promising route for high-efficiency wastewater treatment. The synergistic integration of biochar, MOFs, and chitosan significantly enhances adsorption and photocatalytic performance. These findings highlight the potential of using waste-derived materials for developing multifunctional membranes applicable in practical and sustainable water purification systems.

Key words: cotton-based biochar, ZIF-L(Zn), chitosan, polypropylene composite membrane, adsorption performance, photocatalystic performance, wastewater treatment

中图分类号: 

  • TS171

图1

CB-ZIF-L(Zn)-CSP复合膜制备示意图"

图2

扫描电镜照片"

图3

粉体和复合膜XRD谱图"

图4

红外光谱和热重/微分热曲线"

图5

复合膜过滤CR染料性能比较"

图6

CB、ZIF-L(Zn)和CB-ZIF-L(Zn)粉体吸附-脱附等温线、孔体积分布和(αhv)2 vs. hv关系曲线"

图7

不同粉体制备得到的复合膜吸附-光催化降解有机污染物曲线"

表1

CB-ZIF-L(Zn)-CSP复合膜与其它非织造布膜过滤效率、通量和循环次数比较"

过滤膜成分 污染物 污染物质量
浓度/(mg·L-1)
污染物体积/
mL
通量/
(L·h-1·m-2)
过滤效率/
%
循环
次数
文献
CB-ZIF-L(Zn)-CSP CR 50 50 16.69 100 5 本文
VF-PET/BSA/CMCS/
AgNPs/CaAlg
CR/AR 60 38.5 98.2/75.2 [7]
PP-C-F-Z CR/TC/MB 50/20/5 50 30-1 200 98/96.6/100 15/10/10 [12]
ZIF-8/L-DOPA/PVDF CR/MB/TC 30 159.63 97.3/98.62/95.3 3 [14]
PDA/ZIF-67/PP MB/MO 20 300 202.7/195.6 92.3/99.5 5 [30]
ZIF-67/PVDF AO7/MB/AR 20 263.3 97.3/98.2/90.5 3 [31]
ZIF-67/SA/PVDF MB 5 100 427.6 99 5 [32]
Co3O4/PAN MB 10 100 >300 98 8 [33]
CS/[ZM/PP] MB 20 100 96.8 6 [34]

图8

CB-ZIF-L(Zn)-CSP复合膜过滤去除有机污染物和光催化降解膜中残留污染物的反应机制图"

[1] KIYAK Y, MAZE B, POURDEYHIMI B, et al. Microfiber nonwovens as potential membranes[J]. Separation and Purification Reviews, 2019, 48: 282-297.
doi: 10.1080/15422119.2018.1479968
[2] CHANG W K, HU A Y J, HORNG R Y, et al. Membrane bioreactor with nonwoven fabrics as solid-liquid separation media for wastewater treatment[J]. Desalination, 2007, 202: 122-128.
doi: 10.1016/j.desal.2005.12.047
[3] YAGOUB H, ZHU L P, SHIBRAEN M H M A, et al. Manipulating the surface wettability of polysaccharide based complex membrane for oil/water separation[J]. Carbohydrate Polymers, 2019, 225: 115231.
doi: 10.1016/j.carbpol.2019.115231
[4] LI C, MA H Y, VENKATESWARAN S, et al. Highly efficient and sustainable carboxylated cellulose filters for removal of cationic dyes/heavy metals ions[J]. Chemical Engineering Journal, 2020, 389: 123458.
doi: 10.1016/j.cej.2019.123458
[5] JALVO B, AGUILAR-SANCHEZ A, RUIZ-CALDAS M X, et al. Water filtration membranes based on non-woven cellulose fabrics: effect of nanopolysaccharide coatings on selective particle rejection, antifouling, and antibacterial properties[J]. Nanomaterials, 2021, 11: 1752.
doi: 10.3390/nano11071752
[6] WANG X H, LI W, JIANG H X, et al. Heteropore covalent organic framework-based composite membrane prepared by in situ growth on non-woven fabric for sample pretreatment of food non-targeted analysis[J]. Microchimica Acta, 2021, 188: 235.
doi: 10.1007/s00604-021-04889-9
[7] XU L J, ZHAO K Y, MIAO J P, et al. High-strength and anti-bacterial BSA/carboxymethyl chitosan/silver nanoparticles/calcium alginate composite hydrogel membrane for efficient dye/salt separation[J]. International Journal of Biological Macromolecules, 2022, 220: 267-279.
doi: 10.1016/j.ijbiomac.2022.08.096 pmid: 35985394
[8] ABDULLAH W N A S, NAWI N S M, LAU W J, et al. Enhancing physiochemical substrate properties of thin-film composite membranes for water and wastewater treatment via engineered osmosis process[J]. Polymers, 2023, 15: 1665.
doi: 10.3390/polym15071665
[9] YU H, CAI D J, LI S Y, et al. Tight UF membranes with ultrahigh water flux prepared by in-situ growing ZIF particles in NIPS process for greatly enhanced dye removal efficiency[J]. Journal of Membrane Science, 2023, 666: 121136.
doi: 10.1016/j.memsci.2022.121136
[10] HAMI S S B M, AFFANDI N D N, INDRIE L, et al. Removal of Remazol Red dyes using zeolites-loaded nanofibre coated on fabric substrates[J]. Coatings, 2024, 14: 1155.
doi: 10.3390/coatings14091155
[11] SHI L, LIU J D, GAO B, et al. Photoelectrocatalytic mechanism of PEDOT modified filtration membrane[J]. Science of the Total Environment, 2021, 813: 152397.
doi: 10.1016/j.scitotenv.2021.152397
[12] ZHANG Y N, ZHANG H, YAO J L, et al. Pore-variable, layered-combination, and recyclable polypropylene matrix filtration membrane containing cotton-FeMoO4-ZIF-L(Co) (C-F-Z) composites for highly efficient removal of organic pollutants from wastewater[J]. Chemical Engineering Journal, 2024, 495: 153700.
doi: 10.1016/j.cej.2024.153700
[13] ZHANG S J, MAO Y P, WEI L, et al. Full-value preparation of biochar and 2D N-doped CDs@ZIF-L from fermentation residues for sensitive sensing tetracyclines in food samples[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 676: 132073.
doi: 10.1016/j.colsurfa.2023.132073
[14] HE J, ZHANG R, CHEN D, et al. Self-cleaning of metal-organic framework membranes achieved by photocatalytic ZIFs for dye and antibiotic separation[J]. Journal of Environmental Chemical Engineering, 2024, 12: 113363.
doi: 10.1016/j.jece.2024.113363
[15] BAIG U, FAIZAN M, WAHEED A, et al. A review on super-wettable porous membranes and materials based on bio-polymeric chitosan for oil-water separation[J]. Advances in Colloid and Interface Science, 2022, 303: 102635.
doi: 10.1016/j.cis.2022.102635
[16] ZHANG N, ZHANG H, YAO J L, et al. Coordination tuning of Fe2+ ions concentration in Fe-doped black phosphorus-carbonized cotton fiber (Fe-BP-CCF) composites to regulate photocatalysis and peroxymonosulfate (PMS) activation towards highly efficient degradation of organic pollutants[J]. Chemical Engineering Journal, 2024, 483: 149326.
doi: 10.1016/j.cej.2024.149326
[17] KUAN J L, ZHANG H, GU H S, et al. Adsorption-enhanced photocatalytic property of Ag-doped biochar/g-C3N4/TiO2 composite by incorporating cotton-based biochar[J]. Nanotechnology, 2022, 33(34): 345402.
doi: 10.1088/1361-6528/ac705e
[18] HEN R Z, YAO J F, GU Q F, et al. A two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption.[J]. Chemical Communications, 2013, 49(82): 9500-9502.
doi: 10.1039/c3cc44342f
[19] HERNANDEZ-AGUIRRE O A, NUNEZ-PINEDA A, TAPIA-TAPIA M, et al. Surface modification of polypropylene membrane using biopolymers with potential applications for metal ion removal[J]. Journal of Chemistry, 2016, 2016: 2742013.
[20] MOJA T N, BUNEKAR N, MISHRA S B, et al. Melt processing of polypropylene-grafted-maleic anhydride/Chitosan polymer blend functionalized with montmorillonite for the removal of lead ions from aqueous solutions[J]. Scientific Reports, 2020. DOI: 10.1038/s41598-019-57079-2.
[21] BANDARU S, MURTHY N, KULKARNI R, et al. Magnetic ferrite/carbonized cotton fiber composites for improving electromagnetic absorption properties at gigahertz frequencies[J]. Journal of Materials Science & Technology, 2021, 86: 127-138.
[22] ZOU B, QIU S L, REN X Y, et al. Combination of black phosphorus nanosheets and MCNTs via phosphorus-carbon bonds for reducing the flammability of air stable epoxy resin nanocomposites[J]. Journal of Hazardous Materials, 2020, 383: 121069.
doi: 10.1016/j.jhazmat.2019.121069
[23] GOLSHAN M, SALAMI-KALAJAHI M, ROGHANI-MAMAQANI H, et al. Poly(propylene imine) dendrimer-grafted nanocrystalline cellulose: doxorubicin loading and release behavior[J]. Polymer, 2017, 117: 287-294.
doi: 10.1016/j.polymer.2017.04.047
[24] DING B, WANG X B, XU Y F, et al. Hydrothermal preparation of hierarchical ZIF-L nanostructures for enhanced CO2 capture.[J]. Journal of Colloid and Interface Science, 2018, 519: 38-43.
doi: 10.1016/j.jcis.2018.02.047
[25] WEI P, LOU H J, XU X M, et al. Preparation of PP non-woven fabric with good heavy metal adsorption performance via plasma modification and graft polymerization[J]. Applied Surface Science, 2021, 539: 148195.
doi: 10.1016/j.apsusc.2020.148195
[26] LEE H J, CHO Y, KANG S W, et al. Formation of nanochannels using polypropylene and acetylcellulose for stable separators[J]. Membranes, 2022. DOI: 10.3390/membranes12080764.
[27] RAN J H, CHEN H B, BI S G, et al. Polydopamine-induced in-situ growth of zeolitic imidazolate framework-8/TiO2 nanoparticles on cotton fabrics for photocatalytic performance[J]. Progress in Organic Coatings, 2020, 152: 106123.
doi: 10.1016/j.porgcoat.2020.106123
[28] QI R Z, ZHANG D F, ZHOU Y W, et al. Effect of dispersant on the synthesis of cotton textile waste-based activated carbon by FeCl2 activation: characterization and adsorption properties[J]. Environmental Science and Pollution Research, 2020, 27(36): 45175-45188.
doi: 10.1007/s11356-020-10321-1
[29] LIN X X, HONG J F, WANG C C, et al. CoZnO/C@BCN nanocomposites derived from bimetallic hybrid ZIFs for enhanced electromagnetic wave absorption[J]. Journal of Materials Chemistry A, 2023, 11(33): 17737-17747.
doi: 10.1039/D3TA03286H
[30] LI N, CHEN G Y, ZHAO J H, et al. Self-cleaning PDA/ZIF-67@PP membrane for dye wastewater remediation with peroxymonosulfate and visible light activation[J]. Journal of Membrane Science, 2019, 591: 117341.
doi: 10.1016/j.memsci.2019.117341
[31] LIU D, YIN J L, TANG H, et al. Fabrication of ZIF-67@PVDF ultrafiltration membrane with improved antifouling and separation performance for dye wastewater treatment via sulfate radical enhancement[J]. Separation and Purification Technology, 2021, 279: 119755.
doi: 10.1016/j.seppur.2021.119755
[32] ZHU K X, MOHAMMED S, TANG H, et al. ZIF-67/SA@PVDF ultrafiltration membrane with simultaneous adsorption and catalytic oxidation for dyes[J]. Sustainability, 2023, 15(4): 2879.
doi: 10.3390/su15042879
[33] LIANG H C, XIE A T, NIE S H, et al. Low-pressure driving Co3O4/PAN nanofiber membrane with peroxymonosulfate activation self-cleaning for efficient wastewater purification[J]. Journal of Membrane Science, 2024, 693: 122380.
doi: 10.1016/j.memsci.2023.122380
[34] ZHANG Z Y, LI H S, YUAN J G, et al. Preparation of highly stable ZnO/MOFs/polypropylene non-woven catalytic thin films by chitosan modification for organic wastewater treatment[J]. Journal of Alloys and Compounds, 2024, 1006: 176374.
doi: 10.1016/j.jallcom.2024.176374
[35] WANG H, LIU X, NIU P, et al. Porous two-dimensional materials for photocatalytic and electrocatalytic applications[J]. Matter, 2020, 2(6): 1377-1413.
doi: 10.1016/j.matt.2020.04.002
[36] SUBRAMANIAM M N, WU Z T, GOH P S, et al. The state-of-the-art development of biochar based photocatalyst for removal of various organic pollutants in wastewater[J]. Journal of Cleaner Production, 2023, 429: 139487.
doi: 10.1016/j.jclepro.2023.139487
[37] YANG Y, MA X X, LI Z F, et al. ZIF-8 and humic acid modified magnetic corn stalk biochar: an efficient, magnetically stable, and eco-friendly adsorbent for imidacloprid and thiamethoxam removal[J]. Chemical Engineering Journal, 2023, 465: 142788.
doi: 10.1016/j.cej.2023.142788
[1] 毛泽, 高俊, 凌磊, 武丁胜, 陶云, 张春, 李申, 凤权. 聚丙烯腈/聚吡咯纳米纤维膜的制备及其对铬离子的吸附性能[J]. 纺织学报, 2025, 46(09): 57-65.
[2] 左卓帆, 卢凯亮, 李倩雯, 张维. 基于铝镁合金阳极的靛蓝染色废水电絮凝处理效能优化[J]. 纺织学报, 2025, 46(09): 197-204.
[3] 项文龙, 杨静冉, 肖晓珍. 铁钴双金属有机框架/稻谷壳复合材料的制备及其染料脱色性能[J]. 纺织学报, 2025, 46(06): 178-186.
[4] 邱月, 杨询, 李昊, 李海东, 吴国忠, 张彩丹. 聚琥珀酰亚胺纳米纤维膜改性及其染料吸附性能[J]. 纺织学报, 2025, 46(06): 88-95.
[5] 李鹏飞, 罗忆心, 张子凡, 陆宁, 陈碧泠, 许建梅. 丝素/壳聚糖/明胶栓塞微球的制备及其降解性能[J]. 纺织学报, 2025, 46(05): 116-124.
[6] 王薇, 高建南, 裴笑涵, 陆鑫, 孙银银, 吴建兵. 纤维素/甲基三甲氧基硅烷气凝胶的制备及其油水分离效能[J]. 纺织学报, 2025, 46(05): 135-142.
[7] 金汝诗, 陈万明, 刘国金, 刘承海, 戚栋明, 翟世民. 生物炭在印染废水处理中的应用研究进展[J]. 纺织学报, 2025, 46(04): 235-243.
[8] 曹展瑞, 纪灿灿, 赫羴姗, 周丰, 向阳, 高飞, 刘轲, 王栋. 阴离子交换型乙烯-乙烯醇共聚物纳米纤维气凝胶蛋白分离材料[J]. 纺织学报, 2025, 46(04): 29-37.
[9] 董子靖, 吴欣媛, 王瑞霞, 赵华祥, 钱利江, 应城唯, 孙润军. 壳聚糖改性的炭黑导电织物制备及其在人体运动监测中的应用[J]. 纺织学报, 2025, 46(04): 146-153.
[10] 李逢春, 孙辉, 于斌, 谢有秀, 张德伟. 共价有机框架材料/粘胶水刺非织造布的制备及其染料吸附性能[J]. 纺织学报, 2025, 46(02): 170-179.
[11] 房磊, 刘秀明, 贾娇娇, 蔺志浩, 任燕飞, 侯凯文, 巩继贤, 扈延龄. 高分子量壳聚糖皮芯结构微纳米纤维膜制备[J]. 纺织学报, 2024, 45(09): 1-9.
[12] 吕子豪, 徐慧慧, 袁小红, 王清清, 魏取福. 光动力抗菌水刺棉的染整一体化制备及其性能[J]. 纺织学报, 2024, 45(08): 26-34.
[13] 杨亮, 孔韩韩, 李韦霖, 祁小芬, 张天芸, 王雪梅, 李文全. 沸石咪唑酯骨架-8的制备及其对刚果红的吸附性能[J]. 纺织学报, 2024, 45(07): 140-149.
[14] 武守营, 黄启超, 张开封, 张琳萍, 钟毅, 徐红, 毛志平. 铁-三联吡啶配合物活化高碘酸盐体系构建及其对染色废水的催化降解机制[J]. 纺织学报, 2024, 45(06): 105-112.
[15] 冯颖, 于汉哲, 张宏, 李可心, 马标, 董鑫, 张建伟. 静电纺壳聚糖基纳米纤维的制备及其在水处理中应用研究进展[J]. 纺织学报, 2024, 45(05): 218-227.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!