Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (03): 118-124.doi: 10.13475/j.fzxb.20180302507

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Bentonite supported Zn-Co ozone catalyst for treatment of simulated dye wastewater

SUN Huiping, LÜ Wenzhou()   

  1. Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo, Zhejiang 315211, China
  • Received:2018-03-10 Revised:2018-12-03 Online:2019-03-15 Published:2019-03-15
  • Contact: Lü Wenzhou E-mail:wenzhoulv@yahoo.com

Abstract:

In order to obtain an efficient ozone catalyst, bentonite was used as carrier, and Fe3+, Cu2+, Mn2+, Ni2+, Co2+ and Zn2+ were selected as active components to prepare supported catalysts by a solution mixing method. The influence of supported catalysts on degradation rate and kinetic characteristics of acid red in catalytic oxidation system were studied, and then the best active components were obtained. According to orthogonal experimental design, the best catalyst preparation conditions were achieved, and characterized by X-ray diffraction and scanning electron microscopy. The results show that the best two-component catalyst is bentonite supported Zn-Co. The optimum conditions for the preparation of the two-component catalyst are as followed: the calcination temperature is 400 ℃, calcination time is 3 h, component concentration is 1.2 mol/L, mole ratio of Zn and Co is 1∶1 and starch content is 1.5 g (in terms of 60 g bentonite). The catalyst prepared under the conditions catalyzes the oxidation of acid red with ozone, and the removal rate reaches 99.92% after 10 min of ozone reaction. After the catalyst is reused for 4 times, the removal rate still reaches 81.44%.

Key words: bentonite, zinc-cobalt catalyst, ozone catalyst, acid red, dye wastewater

CLC Number: 

  • TS19

Fig.1

Removal rate of acid red in wastewater by two-component catalyst"

Tab.1

Design and results of orthogonal test for two-component catalysts"

试验
煅烧
温度/℃
煅烧
时间/
h
组分
浓度/
(mol·L-1)
Zn2+
Co2+
量比
淀粉
质量/
g
酸性
大红去
除率/
%
1# 300 2 1.0 2∶1 1.2 64.33
2# 300 3 1.2 1∶1 1.5 73.32
3# 300 4 1.4 1∶1.5 1.8 63.85
4# 300 5 1.6 1∶2 2.1 48.44
5# 400 2 1.0 1∶1.5 2.1 90.95
6# 400 3 1.2 1∶1 1.5 99.92
7# 400 4 1.6 2∶1 1.8 98.43
8# 400 5 1.4 1∶2 1.2 96.53
9# 500 2 1.4 1∶2 1.5 91.97
10# 500 3 1.6 1∶1.5 1.2 95.72
11# 500 4 1.0 1∶1 2.1 96.44
12# 500 5 1.2 2∶1 1.8 94.99
13# 600 2 1.6 1∶1 1.8 98.25
14# 600 3 1.4 2∶1 2.1 94.21
15# 600 4 1.2 1∶2 1.2 95.84
16# 600 5 1.0 1∶1.5 1.5 97.46
K1 61.735 86.375 88.742 87.990 88.655
K2 96.213 89.997 88.775 91.685 90.295
K3 94.780 88.640 87.190 86.995 88.457
K4 96.440 84.155 84.460 82.498 81.760
R 34.705 5.842 4.315 9.187 8.535

Fig.2

Kinetic curves of catalytic oxidation of optimum catalysts and single ozone oxidation"

Fig.3

Removal rate of acid red by recycled two-component catalyst"

Fig.4

XRD spectra of optimum catalysts and bentonite"

Fig.5

SEM images of bentonite and optimum catalysts (×7 000). (a) Bentonite; (b) Zn one-component catalyst;(c) Zn-Co two-component catalyst"

[1] 贾艳萍, 姜成, 郭泽辉, 等. 印染废水深度处理及回用研究进展[J]. 纺织学报, 2017,38(8):172-180.
JIA Yanping, JIANG Cheng, GUO Zehui, et al. Research progress on deep treatment and recycling of dye wastewater[J]. Journal of Textile Research, 2017,38(8):172-180.
[2] 郑苗苗, 邵淑丽, 张东向, 等. 红平菇漆酶基因异源表达及对染料脱色的研究[J]. 纺织学报, 2014,35(12):84-90.
ZHENG Miaomiao, SHAO Shuli, ZHANG Dongxiang, et al. Heterologous expression of Pleurotus djamor laccase gene in pichia pastoris and decolorization on dyes by recombinant laccase[J]. Journal of Textile Research, 2014,35(12):84-90.
doi: 10.1177/004051756503500112
[3] KHORRAMFAR S, MAHMOODI N M, ARAMI M, et al. Oxidation of dyes from colored wastewater using activated carbon/hydrogen peroxide[J]. Desalination, 2011,279(1-3):183-189.
doi: 10.1016/j.desal.2011.06.005
[4] 刘亚纳, 司岸恒, 苌永波. 催化臭氧氧化染料溶液的研究[J]. 环境工程学报, 2010,4(8):1846-1850.
LIU Yana, SI Anheng, CHANG Yongbo. Research on catalytic ozonation of dye solution[J]. Chinese Journal of Environmental Engineering, 2010,4(8):1846-1850.
[5] GUMUS D, AKBAL F. A comparative study of ozonation, iron coated zeolite catalyzed ozonation and granular activated carbon catalyzed ozonation of humic acid[J]. Chemosphere, 2017,174:218-231.
doi: 10.1016/j.chemosphere.2017.01.106 pmid: 28171838
[6] MARCE M, DOMENJOUD B, ESPLUGAS S, et al. Ozonation treatment of urban primary and biotreated wastewaters: impacts and modeling[J]. Chemical Engineering Journal, 2016,283:768-777.
doi: 10.1016/j.cej.2015.07.073
[7] WU J J, MURUGANANDHAM M, CHANG L T, et al. Catalytic ozonation of oxalic acid using SrTiO3 catal-yst[J]. Ozone Science & Engineering, 2011,33(1):74-79.
[8] 刘健松. 硝酸改性及金属负载活性炭催化臭氧氧化酸性大红3R研究[D]. 石家庄: 河北科技大学, 2013: 5-9.
LIU Jiansong. Research on ozone catalytic oxidation of acid red 3R by nitric acid modified and metal loaded activated carbon[D]. Shijiazhuang: Hebei University of Science and Technology, 2013: 5-9.
[9] 卢思颖, 孙中恩, 封莉, 等. T-FMSAC制备及其催化臭氧氧化去除p-CBA效能研究[J]. 中国环境科学, 2017,37(6):2139-2144.
LU Siying, SUN Zhongen, FENG Li, et al. Preparation of T-FMSAC and its catalytic ozonation performance on the removal of p-CBA in water[J]. China Environmental Science, 2017,37(6):2139-2144.
[10] 朱亚雄, 李之鹏, 王维业, 等. MnO2-MgO/AC催化剂对印染废水的臭氧催化氧化深度处理[J]. 水处理技术, 2017,43(11):121-128.
ZHU Yaxiong, LI Zhipeng, WANG Weiye, et al. Comparative study of advanced treatment technology for biochemical effluent of gallic acid processing waste-water[J]. Technology of Water Treatament, 2017,43(11):121-128.
[11] HUANG G, FENG P, FAN G, et al. Application of heterogeneous catalytic ozonation as a tertiary treatment of effluent of biologically treated tannery wastewater[J]. Environmental Letters, 2016,51(8):626-633.
[12] ZHAO L, SUN Z, MA J, et al. Enhancement mechanism of heterogeneous catalytic ozonation by cordierite-supported copper for the degradation of nitrobenzene in aqueous solution[J]. Environmental Science & Technology, 2009,43(6):2047-2053.
doi: 10.1021/es803125h pmid: 19368212
[13] ZHUANG H, HAN H, HOU B, et al. Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts[J]. Bioresource Technology, 2014,166(8):178-186.
doi: 10.1016/j.biortech.2014.05.056
[14] 马博, 杨永哲, 岳山, 等. 臭氧催化氧化法对尾矿淋溶液中氨氮的去除研究[J]. 工业水处理, 2017,37(1):57-60.
MA Bo, YANG Yongzhe, YUE Shan, et al. Study on the ammonia nitrogen removal in tailings leaching solution by catalytic ozonation method[J]. Industrial Water Treatment, 2017,37(1):57-60.
[15] 李庆, 张芸, 樊增禄, 等. Cu-有机骨架对染料废水的吸附和可见光降解[J]. 纺织学报, 2018,39(2):112-118.
LI Qing, ZHANG Yun, FAN Zenglu, et al. Adsorption and visible-light photodegradation of Cu-organic framework to dye wastewater[J]. Journal of Textile Research, 2018,39(2):112-118.
[16] 易兵, 胡倩, 杨辉琼, 等. 酸性红37光催化降解动力学的响应曲面法优化及其转化机制[J]. 纺织学报, 2018,39(6):81-88.
YI Bing, HU Qian, YANG Huiqiong, et al. Photocatalytic degradation kinetics optimization of acid red 37 by response surface method and transformation mechanism thereof[J]. Journal of Textile Research, 2018,39(6):81-88.
[17] 范文玉, 杨小峰, 李康, 等. 多孔ZnO/膨润土臭氧催化剂的制备及表征[J]. 环境工程, 2017,35(1):46-50.
FAN Wenyu, YANG Xiaofeng, LI Kang, et al. Preparation and characterization of the porous ZnO/bentonite ozone type catalyst[J]. Environmental Engineering, 2017,35(1):46-50.
[18] RIDA K, BENABBAS A, BOUREMMAD F, et al. Effect of calcination temperature on the structural characteristics and catalytic activity for propene combustion of sol-gel derived lanthanum chromite perovskite[J]. Applied Catalysis A General, 2007,327(2):173-179.
doi: 10.1016/j.apcata.2007.05.015
[19] 郜子兴, 姚璐霞, 杨文玲, 等. 用于臭氧催化氧化处理抗生素废水的催化剂的制备[J]. 工业水处理, 2017,37(3):52-55.
GAO Zixing, YAO Luxia, YANG Wenling, et al. Preparation of the catalysts used for treating antibiotic wastewater by ozone catalytic oxidation[J]. Industrial Water Treatment, 2017,37(3):52-55.
[20] 缪宏超, 陈远洋, 赵连英, 等. 负载氧化物的羊毛活性炭对模拟染料废水吸附效果[J]. 纺织学报, 2017,38(2):146-151.
MIAO Hongchao, CHEN Yuanyang, ZHAO Lianying, et al. Adsorption properties of oxide loaded wool activated carbon for simulated dye wastewater[J]. Journal of Textile Research, 2017,38(2):146-151.
[21] 张耀辉, 涂勇, 唐敏, 等. Fe2O3-TiO2-MnO2/Al2O3催化臭氧化催化剂的制备及表征[J]. 中国环境科学, 2016,36(10):3003-3009.
ZHANG Yaohui, TU Yong, TANG Min, et al. Preparation and characterization of Fe2O3-TiO2-MnO2/Al2O3 catalysts[J]. China Environmental Science, 2016,36(10):3003-3009.
[22] 郭琳, 刘晨, 吴叶, 等. MgO催化臭氧氧化水中氨氮的研究[J]. 工业水处理, 2017,37(6):48-51.
GUO Lin, LIU Chen, WU Ye, et al. Study on the MgO catalytic ozonation of ammonia-nitrogen in water[J]. Industrial Water Treatment, 2017,37(6):48-51.
[23] 陈一萍, 潘吉特. 碳纳米管/铁氧化物复合材料对模拟染料废水的吸附脱色效果[J]. 纺织学报, 2016,37(10):89-93.
CHEN Yiping, PAN Jite. Preparation of carbon nanotubes/iron oxide composite adsorbents for treatment of dye-containing wastewater[J]. Journal of Textile Research, 2016,37(10):89-93.
doi: 10.1177/004051756703700204
[24] 吉强, 王晓, 戚俊然, 等. 光接枝丙烯酸棉纤维基TiO2/C光催化剂的制备与光催化性[J]. 纺织学报, 2017,38(10):75-80.
JI Qiang, WANG Xiao, QI Junran, et al. Preparation and photocatalysis of acrylic acid grafted cotton cellulose-based TiO2/C photocatalyst[J]. Journal of Textile Research, 2017,38(10):75-80.
[25] XIE C, XU Z, YANG Q, et al. Enhanced photocatalytic activity of titania-silica mixed oxide prepared via basic hydrolyzation[J]. Materials Science & Engineering B, 2004,112(1):34-41.
[26] 冯玥, 石文静, 谭德俊, 等. 活性炭催化臭氧氧化处理染料废水生化出水研究[J]. 环境科学学报, 2013,33(10):2724-2729.
FENG Yue, SHI Wenjing, TAN Dejun, et al. Tertiary purification of biologically-treated effluent of dye-making wastewater by activated carbon catalytic ozonation[J]. Acta Scientiae Circumstantiae, 2013,33(10):2724-2729.
[27] SANCHEZ P M, VON G U, RIVERA-UTRILLA J. Efficiency of activated carbon to transform ozone into·OH radicals: influence of operational parameters[J]. Water Research, 2005,39(14):3189-3198.
doi: 10.1016/j.watres.2005.05.026 pmid: 16005933
[1] QIAN Yifan, ZHOU Tang, ZHANG Liying, LIU Wanshuang, FENG Quan. Preparation of polyacrylonitrile / cellulose acetate / TiO2 composite nanofiber membrane and its photocatalytic degradation performance [J]. Journal of Textile Research, 2020, 41(05): 8-14.
[2] ZHUANG Shuai, YANG Hai, AN Jibin, HU Qian, ZHANG Hao, HE Guitian, YI Bing. Degradation kinetics and mechanism of Acid Red 37 under attack of sulfate radicals [J]. Journal of Textile Research, 2019, 40(11): 131-139.
[3] ZHANG Jingqing, SU Hui, LIANG Xiaoyun, CHEN Weiji, YAO Zhixiang. Rapid detection of banned dye Acid Red 26 in pure wool thread based on oblique projection [J]. Journal of Textile Research, 2019, 40(08): 85-88.
[4] ZHANG Lanhe, ZHANG Mingshuang, GAO Weiwei, LI Zheng, JIA Yanping, GAO Min, LING Liangxiong. Preparation of cobalt aluminate/ceramic honeycomb catalyst and application thereof in dye wastewater treatment [J]. Journal of Textile Research, 2019, 40(03): 125-132.
[5] . Analysis on components properties of alkali-soluble polyester/polyamide 6 sea island fiber [J]. Journal of Textile Research, 2018, 39(09): 15-21.
[6] . Photocatalytic degradetion kinetics optimization of acid red 37 by response surface method and transformation mechanism thereof [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 81-88.
[7] . Adsorption and visible-light photodegradation of Cu-organic framework to dye wastewater [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 112-118.
[8] . Research progress on deep treatment and recycling of  dye wastewater [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 172-180.
[9] . New automatic and continuous production process of disperse dyes [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(11): 80-85.
[10] . Application of cationic starch-bentonite composite to adsorb Reactive Red X-3B dye [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(7): 101-0.
[11] . Analysis of adsorption decoloring effect of granular activated carbon for simulative reactive dye wastewater [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(5): 70-75.
[12] . Application ofiInorganic-organic composite flocculant on dye wastewater treatment [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(4): 98-103.
[13] . Research progress on treatment of dye wastewater by aquatic plants [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(11): 146-152.
[14] SHAO Hong;LI Jialin;CHENG Hui. Preparation of ammonium molybdate modified bentonite and its adsorptive capability to basic blue dye [J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(02): 70-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!