Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (04): 129-134.doi: 10.13475/j.fzxb.20180501806

• Machinery & Accessories • Previous Articles     Next Articles

Noise source identification of high-speed motion mechanism of textile equipment based on near-field acoustic holography method

XU Yang(), LI Ang'ang, SHENG Xiaowei, SUN Zhijun   

  1. College of Mechanical Engineering, Donghua University, Shanghai 201620, China
  • Received:2018-05-08 Revised:2018-08-14 Online:2019-04-15 Published:2019-04-16

Abstract:

In order to identify the noise source of the upmarket textile equipment and realize the low frequency noise control, the tufted carpet loom was used as an example to accurately locate the main sound generating mechanism. First, the overall sound source position of the loom was identified by using the statistical optimal near-field acoustic holography (SONAH) combined with the Hald empirical formula. In view of the noise aliasing phenomenon produced by multiple sound generating mechanisms under the working state of loom, the Tikhonov regularization algorithm was used to solve the discomfort problem caused by the measurement error in the reconstruction process. The generalized cross validation method was adopted to select the optimal regularization coefficient so as to improve the accuracy of reconstructed image and obtain the sound intensity nephogram of local region sound source of the tufting carpet loom. The results show that the method is suitable for the identification of the tufted carpet loom's noise source, in which the motor in the coupling shafting parts is the main noise source of the tufted carpet loom, providing the theoretical support for the active noise reduction of loom.

Key words: tufted carpet loom, noise source identification, statistical optimum, generalized cross validation

CLC Number: 

  • TB52

Fig.1

Simplified structure representation of loom. (a)Main view; (b) Left view; (c) Right view"

Fig.2

Diagrammatic sketch of laboratory sound field"

Fig.3

Identification flow chart"

Fig.4

Site layout of main view direction"

Fig.5

Spectrogram of noise signal pretreatment"

Fig.6

Acoustic imaging figure of 0-350 Hz"

Fig. 7

Acoustic imaging figures of different loom regions based on SONAH. (a) Motor and auxiliary motor system; (b) Needle row and hook shaft mechanism; (c) Spindle cam mechanism; (d) Cam mechanism"

Fig.8

Frequency spectrum of spindle vibration"

Tab.1

Corresponding positioning table for frequency division segment of sound generator"

频段 发声机构 噪声形成机制与误差产生原因
图7(a)
0~60 Hz
电动机与
辅助动电机
机制:电动机和辅助电动机在转动时由转动倍频引起共振噪声
误差:图中右下误差来自于链条产生的摩擦噪声;上方误差来自于凸轮高速振动产生的共振噪声
图7(b)
60~120 Hz
针排与钩轴机构 机制:针排与织物摩擦产生噪声
图7(c)
120~3 000 Hz
主轴曲柄机构 机制:主轴曲柄左右摆动时产生共振噪声
误差: 连杆交接界处出现96 dB左右的第二声学中心
图7(d)
300~600 Hz
凸轮机构 机制:高速摆动的凸轮与主轴之间产生转动噪声
误差:图中左下误差来自于链条与辊筒之间的摩擦噪声;右侧误差来自于织机提花部件与送纱部件的传动噪声
[1] 刘松林, 李才良, 马吉胜, 等. 近场声压法在定位柴油机故障中的应用[J]. 应用声学, 2002,21(4):41-43.
LIU Songlin, LI Cailiang, MA Jisheng, et al. Method of near-field acoustic pressure of ascertaining diesel fault[J]. Applied Acoustics, 2002,21(4):41-43.
[2] 李玉军, 杨建国. 基于表面振动法的柴油机辐射噪声测量和分析[J]. 噪声与振动控制, 2007,27(2):71-74.
LI Yujun, YANG Jianguo. Radiating noise measurement and analysis of diesel engine based on surface vibration measurement[J]. Noise and Vibration Control, 2007,27(2):71-74.
[3] 罗虹, 余文国, 褚志刚. 声强测量法在发动机表面声源识别中的运用[J]. 重庆大学学报(自然科学版), 2005,28(6):9-11.
LUO Hong, YU Wenguo, CHU Zhigang. Application of sound intensity measurement method in spotting the noise source of engine surface[J]. Journal of Chongqing University (Natural Science Edition), 2005,28(6):9-11.
[4] 李卫兵. 基于统计最优和波叠加方法的近场声全息技术研究[D]. 合肥:合肥工业大学, 2006: 19-37.
LI Weibing. Investigation on statistically optimal and wave superposition methods based nearfield acoustic holography[D]. Hefei: Hefei University of Technology, 2006: 19-37.
[5] 褚志刚, 杨洋. 基于波束形成缩放声强的声源局部声功率计算[J]. 声学学报, 2013,38(3):265-271.
CHU Zhigang, YANG Yang. Calculation of the partial area sound power based on the scaled beamforming sound intensity[J]. Acta Acustica, 2013,38(3):265-271.
[6] MO/RKHOLT J, HALD J, GADE S. Sound intensity measurements in vehicle interiors[J]. Sound and Vibration, 2011,45(12):12-14.
[7] YONG T C, BOLTON J S, HALD J. Source visualization by using statistically optimized near-field acoustical holography in cylindrical coordinates[J]. Journal of The Acoustical Society of America, 2012,118(118):2355-2364.
[8] HALD J. Basic theory and properties of statistically optimized near-field acoustical holography[J]. Vibra-tion & Measurement, 2009,125(4):2105-2120.
[9] HANSEN P C, REGULARIZATION T. A Matlab package for analysis and solution of discrete ill-posed problems[J]. Numerical Algorithms, 1994,6(1):1-35.
[10] GOLUB G H, HEATH M, WAHBA G. Generalized cross-validation as a method for choosing a good ridge parameter[J]. Technometrics, 1979,21(2):215-223.
doi: 10.1080/00401706.1979.10489751
[11] 李乾坤, 孟婥, 孙志军, 等. 基于影响系数法的簇绒地毯织机耦联主轴动平衡研究[J]. 机械科学与技术, 2013,32(8):1159-1162.
LI Qiankun, MENG Zhuo, SUN Zhijun, et al. Study on coupled spindle dynamic balancing of tufted carpet loom based on influence coefficient method[J]. Mechanical Science and Technology, 2013,32(8):1159-1162.
[12] 陈心昭, 毕传兴. 近场声全息技术及应用[M]. 北京: 科学出版社, 2013: 77-85.
CHNE Xinzhao, BI Chuanxing. Near Field Acoustic Holography and Its Application[M]. Beijing: Science Press, 2013: 77-85.
[1] CHEN Shaoyong, XU Yang, SHENG Xiaowei, ZHANG Ziyu. Active noise control for tufted carpet equipment based on filtered least mean square algorithm [J]. Journal of Textile Research, 2020, 41(07): 88-92.
[2] . Noise source identification of carpet tufting machine based on empirical mode decomposition and energy characteristics [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 138-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!