Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (05): 18-23.doi: 10.13475/j.fzxb.20180503207

• Fiber Materials • Previous Articles     Next Articles

Structure and liquid retention properties of polyethylene glycol/ polypropylene melt blown nonwoven with bionic vein networks

ZHANG Heng1,2, SHENTU Baoqing1(), ZHANG Wei2, ZHANG Yifeng2, CUI Guoshi3   

  1. 1. College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
    2. School of Textiles, Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    3. Henan Kegao Radiation Chemical Technology Co., Ltd., Luoyang, Henan 471000, China
  • Received:2018-05-14 Revised:2018-12-11 Online:2019-05-15 Published:2019-05-21
  • Contact: SHENTU Baoqing E-mail:shentu@zju.edu.cn

Abstract:

In order to study the bionic vein networks structure and liquid retention properties of polyethylene glycol (PEG)/polypropylene (PP) melt blown nonwovens, the microfiber nonwovens were prepared from PEG and PP blends by melt blowing. The structure including fiber diameter distribution, the quantity density of different diameter fibers, and properties of evaporation rate and retention capacity were investigated. The results show that three kinds of fibers with diameter of smaller than 800 nm, 800-2 000 nm and larger than 2 000 nm are staggered in horizontal direction, forming three level branching networks with asymmetric characteristics. Third branched networks composed of fibers smaller than 800 nm can be adjusted by increasing the PEG ratio and die temperature. The special length is linearly and positively correlated with the die temperature. The evaporation rate of the samples with bionic vein networks accord with the law of textile materials, showing that with the increasing of PEG ratio from 0% to 15%, the liquid retention capacity decreases from 1 938.3% to 1 313.1%.

Key words: polyethylene glycol, polypropylene, nonwoven, bionic, vein branched network, liquid dispersion

CLC Number: 

  • TS167

Fig.1

SEM images (a) and branching structure distribution (b) of fiber"

Fig.2

SEM images of samples with different PEG contents"

Fig.3

Branch number of fibers varying with PEG percent (a) and die temperature (b) in different diameters"

Fig.4

Curves of branch density varying with PEG percent (a) and die temperature (b)"

Fig.5

Evaporation rate of samples varying with time"

Fig.6

Liquid retention of samples varying with PEG percent (a) and die temperature (b)"

[1] YU Bin, CAO Yongmin, SUN Hui, et al. The structure and properties of biodegradable PLLA/PDLA for melt-blown nonwovens[J]. Journal of Polymers & the Environment, 2017,25(2):510-517.
[2] HAN W l, GAJANAN S B, WANG X H. Investigation of nanofiber breakup in the melt-blowing process[J]. Industrial & Engineering Chemistry Research, 2016,55(11):3150-3156.
[3] ZHANG Haifeng, LIU Jinxin, ZHANG Xing, et al. Design of electret polypropylene melt blown air filtration material containing nucleating agent for effective PM2.5 capture[J]. Rsc Advances, 2018,8(15):7932-7941.
[4] ZHANG Chune, WEI Tian, LI Dandan, et al. The high performances of SiO2 coated melt-blown non-woven fabric for lithium-ion battery separator[J]. The Journal of Textile Institute, 2018,109(9):1254-1261.
[5] 魏发云, 张伟, 邹学书, 等. 等离子体诱导丙烯酸接枝改性聚丙烯熔喷非织造材料[J]. 纺织学报, 2017,38(9):109-114.
WEI Fayun, ZHANG Wei, ZOU Xueshu, et al. Grafted modification of polypropylene melt-blown nonwowen materials with acrylic acid induced by plasma[J]. Journal of Textile Research, 2017,38(9):109-114.
[6] KOU Jianlong, CHEN Yanyan, ZHOU Xiaoyan, et al. Optimal structure of tree-like branching networks for fluid flow[J]. Physica A: Statistical Mechanics and its Applications, 2014,393(1):527-534.
[7] SHOU Dahua, FAN Jintu. Design of nano-and microfibrous channels for fast capillary flow[J]. Langmuir, 2018,34(4):1235-1241.
pmid: 29249150
[8] 田伟, 韩旭, 邢肖平, 等. 提花水刺非织造布的吸湿扩散性能[J]. 纺织学报, 2014,35(9):47-50.
TIAN Wei, HAN Xu, XING Xiaoping, et al. Moisture absorbing and diffusing capacity of jacquard spun laced nonwovens[J]. Journal of Textile Research, 2014,35(9):47-50.
[9] SHOU Dahua, LI Ye, FAN Jintu, et al. Geometry-induced asymmetric capillary flow[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2014,30(19):5448-5454.
pmid: 24762329
[10] FAN Jintu, SARKAR M K, SZETO Y C, et al. Plant structured textile fabrics[J]. Materials Letters, 2007,61(2):561-565.
[11] CHEN Qing, FAN Jintu, MANAS Sarkar. Biomimetics of plant structure in knitted fabrics to improve the liquid water transport properties[J]. Textile Research Journal, 2010,80(6):568-576
[12] SARKAR M, FAN Jintu, SZETO Y C, et al. Biomimetics of plant structure in textile fabrics for the improvement of water transport properties[J]. Textile Research Journal, 2009,79(7):657-668.
[13] 张恒, 甄琪, 钱晓明, 等. 聚酯/聚酰胺中空橘瓣型超细纤维非织造材料的孔径预测[J]. 纺织学报, 2018,39(1):56-61.
ZHANG Heng, ZHEN Qi, QIAN Xiaoming, et al. Prediction of pore sizes of polyester/polyamide 6 hollow segmented-pie microfiber nonwovens[J]. Journal of Textile Research, 2018,39(1):56-61.
[14] 张恒, 甄琪, 钱晓明, 等. 仿生树型超高分子量聚乙烯柔性防刺复合材料制备及其透湿性能[J]. 纺织学报, 2018,39(4):63-68.
ZHANG Heng, ZHEN Qi, QIAN Xiaoming, et al. Preparation and moisture permeability of ultra-high molecular weight polyethylene flexible stab-resistant composite with dendritic structure[J]. Journal of Textile Research, 2018,39(4):63-68.
[15] 张志亮, 刘国东, 张富仓, 等. 植物叶片导水率的研究进展[J]. 生态学杂志, 2014,33(6):1663-1670.
ZHANG Zhiliang, LIU Guodong, ZHANG Fucang, et al. Research progress of plant leaf hydraulic conductivity[J]. Chinese Journal of Ecology, 2014,33(6):1663-1670.
[16] 龚容, 高琼. 叶片结构的水力学特性对植物生理功能影响的研究进展[J]. 植物生态学报, 2015,39(3):300-308.
GONG Rong, GAO Qiong. Research progress in the effects of leaf hydraulic characteristics on plant physiological functions[J]. Chinese Journal of Plant Ecology, 2015,39(3):300-308.
[17] 迟长龙, 于翔, 李静静, 等. PP/PEG共混体系熔体流变性能研究[J]. 塑料科技, 2013,41(5):43-47.
CHI Changlong, YU Xiang, LI Jingjing. Research on melt rheological properties of PP/PEG blends[J]. Plastics Science & Technology, 2013,41(5):43-47.
[18] 姜涛. PEG、EVA、WSPET改性丙纶流变行为的研究[J]. 石油化工高等学校学报, 2003,16(1):39-42.
JIANG Tao. The rheological behavior of PEG, EVA, WSPET modified polypropylene fiber[J]. Journal of Petrochemical Universities, 2003,16(1):39-42.
[19] SHOU Dahua, LI Ye, FAN Jintu. Treelike networks accelerating capillary flow[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2014,89(5):053007.
[20] PAN Ning, CHEN Julie, SEO Moon, et al. Micromechanics of a planar hybrid fibrous network[J]. Textile Research Journal, 1997,67(12):907-925.
[21] LI Y, HOLCOMBE B V. A two-stage sorption model of the coupled diffusion of moisture and heat in wool fabrics[J]. Textile Research Journal, 1992,62(4):211-217.
[22] 张锐. 水刺非织造材料工艺参数与其保湿性之间的关系研究[D]. 杭州:浙江理工大学, 2010: 59-66.
ZHANG Rui. Study on the relationship between the process parameters of spunlaced non-woven and its moisture permeability [D]. Hangzhou: Zhejiang Sci-tech University, 2010: 59-66.
[1] WANG Qiuping, ZHANG Ruiping, LI Chenghong, ZHANG Gecheng. Preparation and characterization of conductive polyester nonwovens [J]. Journal of Textile Research, 2020, 41(10): 116-121.
[2] SUN Huanwei, ZHANG Heng, ZHEN Qi, ZHU Feichao, QIAN Xiaoming, CUI Jingqiang, ZHANG Yifeng. Filtrations of propylene-based micro-nano elastic filters via melt blowing process [J]. Journal of Textile Research, 2020, 41(10): 20-28.
[3] QIAO Yansha, WANG Qian, LI Yan, SANG Jiawen, WANG Lu. Preparation and in vitro inflammation evaluation of polydopamine coated polypropylene hernia mesh [J]. Journal of Textile Research, 2020, 41(09): 162-166.
[4] PAN Lu, CHENG Tingting, XU Lan. Preparation of polycapne / polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffoldrolacto [J]. Journal of Textile Research, 2020, 41(09): 167-173.
[5] ZHANG Lingyun, QIAN Xiaoming, ZOU Chi, ZOU Zhiwei. Preparation and properties of SiO2 aerogel / polyester-polyethylene bicomponent fiber composite thermal insulation materials [J]. Journal of Textile Research, 2020, 41(08): 22-26.
[6] CHEN Shiping, CHEN Min, WEI Cen, WANG Fujun, WANG Lu. Structure and functions of medical protective clothing and trend for research and development [J]. Journal of Textile Research, 2020, 41(08): 179-187.
[7] XIA Lei, CHENG Bowen, XI Peng, ZHUANG Xupin, ZHAO Yixia, LIU Ya, KANG Weimin, REN Yuanlin. Research progress of flash spinning nano / micro-fiber nonwoven technology [J]. Journal of Textile Research, 2020, 41(08): 166-171.
[8] AN Qi, FU Yijun, ZHANG Yu, ZHANG Wei, WANG Lu, LI Dawei. Research progress of nonwovens for medical protective garment [J]. Journal of Textile Research, 2020, 41(08): 188-196.
[9] ZHOU Huilin, YANG Weimin, LI Haoyi. Research progress of filtering material for medical mask [J]. Journal of Textile Research, 2020, 41(08): 158-165.
[10] LÜ Hanming, WANG Xiangyu, LIU Fengkun. Estimating water content of acetate fiber spunlaced nonwovens with dielectric spectroscopy [J]. Journal of Textile Research, 2020, 41(06): 55-60.
[11] WAN Yucai, LIU Ying, WANG Xu, YI Zhibing, LIU Ke, WANG Dong. Structure and property of poly(vinyl alcohol-co-ethylene) nanofiber / polypropylene microfiber scaffold: a composite air filter with high filtration performance [J]. Journal of Textile Research, 2020, 41(04): 15-20.
[12] ZHANG Xing, LIU Jinxin, ZHANG Haifeng, WANG Yuxiao, JIN Xiangyu. Preparation technology and research status of nonwoven filtration materials for individual protective masks [J]. Journal of Textile Research, 2020, 41(03): 168-174.
[13] ZHEN Qi, ZHANG Heng, ZHU Feichao, SHI Jianhong, LIU Yong, ZHANG Yifeng. Fabrication and properties of polypropylene / polyester bicomponent micro-nanofiber webs via melt blowing process [J]. Journal of Textile Research, 2020, 41(02): 26-32.
[14] FU Lisong, ZHANG Shujie, WANG Rui, YANG Zhaowei, JING Mengke. Tensile strength of polyester / ramie nonwoven composite applied on pipeline rehabilitation [J]. Journal of Textile Research, 2020, 41(02): 52-57.
[15] LIU Yuhao, SUN Hui, WANG Jieqi, YU Bin. Preparation of TiO2 / MIL-88B(Fe) / polypropylene composite melt-blown nonwovens and study on dye degradation properties [J]. Journal of Textile Research, 2020, 41(02): 95-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!