Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (8): 27-34.doi: 10.13475/j.fzxb.20180706908

• Fiber Materials • Previous Articles     Next Articles

Controllability of bead structure in hot air-through bonded nonwovens and crystallization kinetics thereof

ZHOU Ling1,2,3, JIN Xiangyu1,2,3()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China;
    3. Engineering Research Center of Technical Textiles, Donghua University, Shanghai 201620, China
  • Received:2018-07-25 Revised:2019-05-09 Online:2019-08-15 Published:2019-08-16
  • Contact: JIN Xiangyu E-mail:jinxy@dhu.edu.cn

Abstract:

In order to realize the controllability of bead structures in hot air-through bonded nonwovens, a secondary heating process was adopted. By controlling the processing temperature and processing time as well as the sheath-core ratio of polyethylene/polyester (PE/PET) composite fibers, beads of different structures were prepared. The change rule of the bead structure was analyzed by using Image Pro Plus image processing software. The crystallization properties of the bead fibers in the web were investigated by an X-ray diffractometer. Differential scanning calorimetry was also adopted to trace the crystallization process of bead structures in the web. The results show that the PE/PET bicomponent fibers with a sheath-core ratio of 50:50 can achieve the most rounded (irregular parameter value close to 1) bead structure under the conditions of the secondary heating temperature of 140 ℃ and the reheating time of 120 s. With the increase of temperature, the crystallinity of bead fiber increases first and then decreases. The isothermal crystal kinetics analysis of the Avrami equation shows that the Avrami index is around 1, and as the crystallization temperature increases, the crystallization rate decreases gradually.

Key words: polyethylene/polyester sheath-core fiber, hot air-through bonded nonwoven, diameter distribution, bead structure, crystallization kinetics

CLC Number: 

  • TS174.1

Fig.1

Composite fiber mesh preparation flow chart"

Tab.1

Sample secondary heating parameter"

试样编号 温度/℃ 时间/s 试样编号 温度/℃ 时间/s
1# 0 0 8# 120 120
2# 140 30 9# 130 120
3# 140 60 10# 140 120
4# 140 90 11# 150 120
5# 140 120 12# 160 120
6# 140 150 13# 170 120
7# 140 180

Fig.2

SEM images of fibers in primary thermally consolidated fiber mesh. (a) Surface(×150); (b) Section(×1 800)"

Fig.3

SEM images of fibers of bead structure. (a) Surface(×150); (b) Section(×1 800)"

Fig.4

General pattern of bead molding"

Fig.5

Diameter distribution statistical results of sheath-core PE/PET fibers and its change when forming bead structures. (a) Diameter distribution of untreated sheath-core PE/PET; (b) Dameter distribution of bead structure fibers at different time; (c) Diameter distribution of bead structure fibers in different temperature"

Fig.6

Bead-structure shaft diameter varies with treatment temperature, time, and sheath-core ratio. (a) Effect of different treatment time on bead morphology; (b) Change of different treatment temperatures on bead shape; (c) Change of short-axis diameter of different sheath-core ratio fibers with time varying; (d) Trend of short-axis diameter of different sheath-core ratio fibers with temperature varying"

Fig.7

XRD spectra of PE/PET bead structure fibers in different processing temperature"

Tab.2

Testing result of cortical crystallization in beaded sheath-core fibers"

样品编号 2θ/(°) Ic Ia β/(°) Xc/% D101/nm d/nm
未处理样品 22.133 14 387 22 981 8.678 38.50 0.93 0.401 3
10# 21.889 21 034 33 444 8.547 38.61 0.94 0.405 7
13# 21.945 9 246 21 483 9.769 30.09 0.81 0.404 6

Fig.8

DSC curve at different crystallization temperatures"

Fig.9

Isothermal crystallization curve of X(t)-t"

Fig.10

Fitting straight line of lg[-ln(1-X(t))]-lgt"

Tab.3

Isothermal crystallization kinetic parameters of cortical polymers"

Tc/℃ K n t1/2/min G/min-1
103.5 0.89 0.67 0.69 1.45
104.0 0.71 0.70 0.97 1.03
104.5 0.56 0.97 1.25 0.80
105.0 0.45 1.00 1.54 0.65
[1] 谢继华 . 热风非织造布在卫生用品面层的应用与创新[J]. 生活用纸, 2017(3):54-55.
XIE Jihua . Application and innovation of hot air non-woven fabrics in the surface layer of sanitary products[J]. Tissue Paper, 2017(3):54-55.
[2] 谢柠蔚, 张瑜, 张广宇 . 纳米氧化锌对热风非织造材料抗菌性的影响[J]. 棉纺织技术, 2017 ( 11):23-25.
XIE Ningwei, ZHANG Yu, ZHANG Guangyu . Influence of nano zinc oxide on hot air non-woven materials for antibacterial properties.[J]. Cotton Textile Technology, 2018 ( 11):23-25.
[3] STASZEL C, YARIN A L . Point-bonded polymer nonwovens and their rupture in stretching[J]. Polymer, 2018,146:209-221.
[4] 赵斌 . 理想流体近似的讨论[J]. 物理通报, 2016,35(1):123-124.
ZHAO Bin . Discussion of the ideal fluid approxima-tion[J]. Physics Bulletin, 2016,35(1):123-124.
[5] 陈剑锐 . 设计制备杂化涂剂改善芳纶纤维及其复合材料的界面性能[D]. 杭州:浙江理工大学, 2014: 9-10.
CHEN Jianrui . Design and manufacture of hybrid paint to improve aramid fiber and its composite interface performance[D]. Hangzhou: Zhejiang Sci-Tech Technology, 2014: 9-10.
[6] 崔卫国, 吴峰 . PE/PP皮芯型复合纤维[J]. 化纤与纺织技术, 2005(4):18-22.
CUI Weiguo, WU Feng . PE/PP core-shell bicomponent fiber[J]. Chemical Fiber & Textile Technology, 2005(4):18-22.
[7] JACKSON K A . Crystal growth kinetics[J]. Materials Science & Engineering, 1984,65(1):7-13.
[8] 饶朗毓, 蓝永洪, 牛海艳 , 等. 胸水中腺癌细胞和反应性间皮细胞的形态结构定量判别分析[J]. 海南医学院学报, 2012,18(9):1210-1212.
RAO Langyu, LAN Yonghong, NIU Haiyan , et al. Chromatic quantitative analysis of adenocarcinoma cells and reactive mesothelial cells in pleural effusion[J]. Journal of Hainan Medical University, 2012,18(9):1210-1212.
[9] PANG T, DENG J, WANG J , et al. Effects of the annealing temperature on the crystalization and refraction index of the ZnO thin film[J]. Micronanoelectronic Technology, 2015,2:93-97.
[10] 文潮, 李迅, 孙德玉 , 等. 纳米金刚石颗粒粒度的测量与表征[J]. 机械科学与技术, 2003,22(S1):163-165.
WEN Chao, LI Xun, SUN Deyu , et al. Measurement and characterization of nanodiamond particle size[J]. Mechanical Science and Technology for Aerospace Engineering, 2003,22(S1):163-165.
[11] 袁玉珍, 邓尚民 . 布拉格方程在高聚物结构研究中的应用[J]. 物理与工程, 1998(3):33-35.
YUAN Yuzhen, DENG Shangmin . The application of Bragg's equation in the study of polymer structure[J]. Physics and Engineering, 1998(3):33-35.
[12] 张志英, 杜莹华 . 研究高聚物结晶动力学的等速升温DSC方法[J]. 合成纤维工业, 1990(2):41-44.
ZHANG Zhiying, DU Yinghua . A DSC method for calculating crystallization kinetics of polymers under the constant heating rate conditions[J]. China Synthetic Fiber Industry, 1990(2):41-44.
[13] YANG J, JMCCOY B, MADRAS G . Distribution kinetics of polymer crystallization and the Avrami equation[J]. Journal of Chemical Physics, 2005,122(6):064901.
doi: 10.1063/1.1844373 pmid: 15740402
[14] 张志英 . 聚合物结晶动力学理论和方法研究[D]. 天津:天津工业大学, 2006: 4-15.
ZHANG Zhiying . Study on the theory and method of polymer crystallization kinetics[D]. Tianjin: Tianjin Polytechnic University, 2006: 4-15.
[15] 张广成, 史学涛, 项士新 , 等. 成核剂对聚对苯二甲酸乙二醇酯的结晶行为影响[J]. 机械科学与技术, 2006,25(6):641-646.
ZHANG Guangcheng, SHI Xuetao, XIANG Shixin , et al. Influence of nucleation agents on the crystalallization behavior of PET[J]. Mechanical Science and Technology, 2006,25(6):641-646.
[16] 朱平平, 马德柱 . PET和添加型PET结晶动力学研究[J]. 高分子材料科学与工程, 1989(6):36-42.
ZHU Pingping, MA Dezhu . Crystallization kinetics research of PET and additive PET[J]. Polymer Materials Science & Engineering, 1989(6):36-42.
[17] 刘广田 . 季铵盐型聚丙烯接枝物的制备及其在PP/PVC共混体系中的应用[D]. 秦皇岛:燕山大学, 2010: 28-32.
LIU Guangtian . Preparation of quaternary ammonium salt type polypropylene graft and its application in PP/PVC blending system[J]. Qinhuangdao: Yanshan University, 2010: 28-32.
[1] . Nonisothermal crystallization kinetics of novel nylon-carbon chain polyamide 1211 [J]. Journal of Textile Research, 2018, 39(12): 1-6.
[2] . Crystallization behavior and spherulites morphology of stereocompolexed poly(lactic acid)s with different molecular weights [J]. Journal of Textile Research, 2016, 37(2): 27-34.
[3] CHEN Haizhen. Influence of nano-TiO2 on crystallization kinetics of polyester [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(4): 25-29.
[4] WANG Yinli;CHEN Yan;ZHANG Xiaojing;WANG Hongbo;GAO Weidong. Effect of electrospinning parameters on diameter distribution of SCA nanofiber [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(11): 6-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2000, 21(05): 31 -33 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 1987, 8(11): 40 -41 .
[3] GONG Lifang;NI Renjie;HUANG Yu;YAO Cheng. Research on the antistatic performance of bisquaternary ammonium salt for polyester fabric[J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(5): 72 -74 .
[4] LIU Hao;CHENG Ling. Quality evaluation of knitting yarns using modified FKCM[J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(01): 37 -41 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 1993, 14(04): 26 -30 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 1983, 4(11): 52 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 1983, 4(12): 26 -30 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 1983, 4(12): 51 .
[9] Jie YU. Structure and properties of polyacrylonitrile / Ca-montmorillonite nanocomposite fiber[J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(5): 29 -32 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 1982, 3(01): 58 .