Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (06): 27-31.doi: 10.13475/j.fzxb.20180804705

• Textile Engineering • Previous Articles     Next Articles

Effect of structure change of warp-knitted optical fiber sensing fabric on bending loss of optical fiber inlaid

YANG Kun1(), LI Meiqi1, ZHANG Cheng2, GUO Xi1   

  1. 1. School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
    2. School of Electronic and Information Engineering, Tianjin Polytechnic University, Tianjin 300387, China
  • Received:2018-08-16 Revised:2019-03-15 Online:2019-06-15 Published:2019-06-25

Abstract:

In order to study the influence of the fabric structure change of the warp-knitted optical fiber sensing fabric on the bending loss of the optical fiber inlaid during longitudinal stretching, a warp-knitted fiber sensing fabric with a locknit construction as the ground structure and an polymer optical fiber as the inlay yarn was knitted. A section of polymer optical fiber was inlaid into the ground structure in a form of two reverse connected semicircles with a radius of 10 mm, forming a sensing unit. Stitch height, stitch width and fabric thickness under tensile loading were measured, and the signal transmission property of the optical fiber was tested. Experiment results show that the optical fiber can be combined with warp-knitted fabric in the form of weft insertion. During stretching process, yarn sections of the ground structure are transferred and fabric thickness decreases with the increase of the stretching distance. The pressing effect of the knitting yarns on the optical fiber causes the micro-bending loss of the optical fibers, and the microbending and macrobending losses are compounded during stretching process.

Key words: warp knitting, polymer optical fiber, sensing fabric, macrobending, loss

CLC Number: 

  • TS186

Tab.1

Parameters of knitting yarns"

纱线编号 种类 颜色 线密度/tex 排列位置 工作针数
Y1 棉纱 红色 36.67 前梳 8
Y2 棉纱 粉色 33.33 前梳 34
Y3 棉纱 黄色 36.00 前梳 4
Y4 棉纱 白色 35.00 后梳 46

Fig.1

Threading of knitting yarns"

Fig.2

Shape of sensing unit"

Fig.3

Warp knitted optical fiber sensing fabric(back side)"

Fig.4

Stitch height(a) and stitch width(b) at different stretch rates"

Fig.5

Relationship between fabric thickness and stretch length"

Fig.6

Relationship between stretch length and output voltage within 60 s"

Fig.7

Relationship between stretch length and output voltage within 20 mm. (a)Stretch;(b)Recovery"

Fig.8

Morphology simulation of optical fiber in fabric"

Fig.9

Sectional view of fabric during stretching. (a)Unstretched; (b) Stretched"

[1] MARQUES C A F, WEBB D J, ANDRE P. Polymer optical fiber sensors in human life safety[J]. Optical Fiber Technology, 2017,36:144-154.
[2] SAKAGUCHI A, KATO M, ISHIZAWA H, et al. Fabrication of optical fiber embedded knitted fabrics for smart textiles[J]. Journal of Textile Engineering, 2016,62(6):129-134.
[3] 何宏瑾, 王跃林. 柔性可穿戴生命体征传感器的研究进展[J].传感器与微系统, 2018(7):1-7.
HE Hongjin, WANG Yuelin. Research progress of flexible wearable vital signs sensors[J]. Transducer and Microsystem Technologies, 2018(7):1-7.
[4] ZHANG Hui, TAO Xiaoming. A single-layer stitched electrotextile as flexible pressure mapping sensor[J]. Journal of the Textile Institute Proceedings & Abstracts, 2012,103(11):1151-1159.
[5] XIE J, LONG H, MIAO M. High sensitivity knitted fabric strain sensors[J]. Smart Material Structures, 2016,25(10):105008.
[6] 吕晨, 钟智丽, 匡丽赟, 等. 聚合物光纤织物的特性及其应用[J]. 纺织学报, 2013,34(7):148-153.
LÜ Chen, ZHONG Zhili, KUANG Liyun, et al. Properties and application of polymer optical fiber fabric[J]. Journal of Textile Research, 2013,34(7):148-153.
[7] 丁小平, 王薇, 付连春. 光纤传感器的分类及其应用原理[J]. 光谱学与光谱分析, 2006,26(6):1176-1178.
pmid: 16961262
DING Xiaoping, WANG Wei, FU Lianchun. Classification and application principles of optical-fibre transducer[J]. Spectroscopy & Spectral Analysis, 2006,26(6):1176-1178.
pmid: 16961262
[8] MARQUES C A F, WEBB D J, ANDER P. Polymer optical fiber sensors in human life safety[J]. Optical Fiber Technology, 2017,36:144-154.
[9] 龙海如. 针织学[M]. 北京: 中国纺织出版社, 2014: 3-21.
LONG Hairu. Knitting Technology[M]. Beijing: China Textile & Apparel Press, 2014: 3-21.
[10] NARBONNEAU F, JEANE M, KINET D, et al. OFSETH: smart medical textile for continuous monitoring of respiratory motions under magnetic resonance imaging[C] //2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.[s.l]:IEEE, 2009: 1473-1476.
[11] SILVA A F, CARMO J P, MENDES P M, et al. Simultaneous cardiac and respiratory frequency measurement based on a single fiber Bragg grating sensor[J]. Measurement Science & Technology, 2011,22(22):75801-75801.
[12] YANG X, CHEN Z, ELVIN C S M, et al. Textile fiber optic microbend sensor used for heartbeat and respiration monitoring[J]. IEEE Sensors Journal, 2015,15(2):757-761.
doi: 10.1109/JSEN.2014.2353640
[13] 彭星玲, 张华, 李玉龙. 光纤宏弯传感器研究进展[J]. 光通信技术, 2012,36(11):42-45.
PENG Xingling, ZHANG Hua, LI Yulong. The research advances of macrobending fiber based sensors[J]. Optical Communication Technology, 2012,36(11):42-45.
[14] 黄葆荷, 王金春, 杨斌. 织造对不同结光构纤织物侧发光性能的影响[J]. 纺织学报, 2013,34(7):40-44.
HUANG B, WANG J, YANG B. Effects of weaving process on side-glowing properties of polymer optical fiber fabrics with different structures[J]. Journal of Textile Research, 2013,34(7):40-44.
doi: 10.1177/004051756403400108
[15] YANG X, CHEN Z, ELVIN C S M, et al. Textile fiber optic microbend sensor used for heartbeat and respiration monitoring[J]. IEEE Sensors Journal, 2015,15(2):757-761.
doi: 10.1109/JSEN.2014.2353640
[16] 杨昆, 王飞翔, 张诚. 宏弯光纤应变传感经编织物的设计[J]. 纺织学报, 2017,38(8):44-49.
YANG Kun, WANG Feixiang, ZHANG Cheng. Design of warp knitted strain sensing fabric based on optical macro-bending sensor[J]. Journal of Textile Research, 2017,38(8):44-49.
doi: 10.1177/004051756803800106
[17] 杨昆, 于宝康 . 一种经编小样织机: 201410652040.4[P]. 2015-03-25.
YANG Kun, YU Baokang. One kind of sample warp knitting machine: 201410652040.4[P]. 2015-03-25.
[18] 孟宪微, 孙秀平, 谭勇, 等. 塑料光纤弯曲损耗特性的测试与分析[J]. 长春理工大学学报(自然科学版), 2008,31(2):59-61.
MENG Xianwei, SUN Xiuping, TAN Yong, et al. Analysis and test of bend loss in polymer optical fibers[J]. Journal of Changchun University of Science & Technology(Natural Science Edition), 2008,31(2):59-61.
[19] MARCUSE D. Bend loss of slab and fiber modes computed with diffraction theory[J]. IEEE Journal of Quantum Electronics, 1993,29(12):2957-2961.
[20] 邢雪宁, 张治辉, 陈婷. 光纤的弯曲损耗和微弯损耗及其利用[J].中国有线电视, 2004(23):24-26.
XING Xuening, ZHANG Zhihui, CHEN Ting. Optical fiber's bend loss and microbend loss and its applica-tion[J]. China Cable Television, 2004(23):24-26.
[1] SUN Shuai, MIAO Xuhong, ZHANG Qi, WANG Jin. Yarn tension fluctuation on high-speed warp knitting machine [J]. Journal of Textile Research, 2020, 41(03): 51-55.
[2] WANG Jiandong, XIA Fenglin, LI Yalin, ZHAO Yuning. Optimal sliding mode control of electronic transverse servo for comb bar of warp knitting machine [J]. Journal of Textile Research, 2020, 41(02): 143-148.
[3] ZHANG Xujing, WANG Lichuan, CHEN Yan. Balancing optimization of garment sewing assembly line based on genetic algorithm [J]. Journal of Textile Research, 2020, 41(02): 125-129.
[4] ZHANG Qi, LUO Cheng, QU Chaoqun, WEI Li, CHENG Qian, XIA Fenglin. Key control technology of breakpoint continuous weaving applied in modern warp knitting electronic jacquard control system [J]. Journal of Textile Research, 2019, 40(10): 164-170.
[5] HE Kejie, JIANG Gaoming. Structure design and separation technology of Raschel lace selvage [J]. Journal of Textile Research, 2019, 40(07): 51-57.
[6] ZHANG Qi, WEI Li, LUO Cheng, XIA Fenglin, JIANG Gaoming. Double jacquard control system of warp knitting machine based on dual bus architecture [J]. Journal of Textile Research, 2019, 40(07): 145-150.
[7] XU Yunlong, XIA Fenglin. Influence of guide-bar swing on instantaneous yarn demand and yarn tension on double needle bar warp knitting machine [J]. Journal of Textile Research, 2019, 40(06): 106-110.
[8] SUN Wan, MIAO Xuhong, WANG Xiaolei. Tearing properties of Jacquard warp knitted spacer fabric [J]. Journal of Textile Research, 2019, 40(06): 32-37.
[9] . Thermal-moisture comfort of multilayered fabric systemsused as firefighting clothing [J]. Journal of Textile Research, 2019, 40(05): 119-123.
[10] . Influence of yarn rupture work on performance of warp knitting [J]. Journal of Textile Research, 2018, 39(12): 37-40.
[11] . Working mechanism of warp knitting yarn tension compensator [J]. Journal of Textile Research, 2018, 39(11): 140-144.
[12] . Multi-layer design of multi-bar Raschel laces [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 44-49.
[13] . Influence of sizing pretreatment agent in properties of warp knitting cotton yarn  [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(04): 82-86.
[14] . Evaluation of dynamic tension of warp knitting yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 68-72.
[15] . Garment model and process realization of warp-knitting fully fashioned sportswear [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 38-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!