Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (11): 26-31.doi: 10.13475/j.fzxb.20180907307

• Fiber Materials • Previous Articles     Next Articles

Preparation and properties of polyamide-based magnetic fibers

LI Changling1, WANG Wencong1, HUA Dong2, ZHOU Jianping2, KAN Jianxing2, WANG Hongbo1()   

  1. 1. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
    2. Jiangsu Textile Research Institute Co., Ltd., Wuxi, Jiangsu 214024, China
  • Received:2018-09-28 Revised:2019-06-13 Online:2019-11-15 Published:2019-11-26
  • Contact: WANG Hongbo E-mail:wxwanghb@163.com

Abstract:

In order to meet the market demand for health-care textiles, polyamide-based magnetic fibers were successfully prepared by adding magnetic materials into polyamide spinning melt. The Fourier transform infrared spectrometry, X-ray diffraction, scanning electron microscopy, X-ray energy dispersive spectroscopy, differential scanning calorimetry, and tensile strength tester were carried out to analyze the chemical structure, crystal structure, morphology and various properties of the magnetic fibers. The results show that the ferrite magnetic powders are uniformly dispersed in nylon-based magnetic fibers; the magnetic powder content does not have much influence on the melting point of the nylon fiber; the breaking strength decreases with the increase of the magnetic powder content, but even if the magnetic powder content is up to 25%, the strength of the fiber is still 2.50 cN/dtex, which can meet the weaving requirements; and three different sizes of knitted fabrics were woven with nylon-based magnetic fibers, the three kinds of fabric have a magnetic flux density between 0.02 mT and 0.1 mT, and the magnetic flux density of the fabric increases with the content of the magnetic powder.

Key words: polyamide, magnetic powder, magnetic fiber, magnetic flux density

CLC Number: 

  • TS151

Tab.1

Process parameters of magnetic fabric"

工艺编号 织物编号 组织结构 纱线配置 纱线根数 机器型号
F-1 1# 100%的纤维MPA-0
2# 平针组织 100%的纤维MPA-15 1 SM8-TOP2 MP2
3# 100%的纤维MPA-20
4# 100%的纤维MPA-25
F-2 5# 50%的纤维MPA-0+50%的氨纶包芯纱
6# 添纱组织 50%的纤维MPA-15+50%的氨纶包芯纱 1 SM8-TOP2 MP2
7# 50%的纤维MPA-20+50%的氨纶包芯纱
8# 50%的纤维MPA-25+50%的氨纶包芯纱
F-3 9# 100%的纤维MPA-0
10# 平针组织 100%的纤维MPA-15 4 台车
11# 100%的纤维MPA-20
12# 100%的纤维MPA-25

Fig.1

FT-IR spectra of fibers"

Fig.2

X-ray diffraction patterns of fibers"

Fig.3

SEM images of four fibers. (a) MPA-0 cross-sectional image; (b) MPA-15 cross-sectional image; (c) MPA-20 cross-sectional image; (d) MPA-25 cross-sectional image; (e) MPA-0 surface image; (f) MPA-15 surface image; (g) MPA-20 surface image; (h) MPA-25 surface image"

Fig.4

EDS curve of fibers. (a) MPA-0 cross-sectional image; (b) MPA-0 surface image; (c) MPA-15 cross-sectional image; (d) MPA-15 surface image; (e) MPA-20 cross-sectional image; (f) MPA-20 surface image; (g) MPA-25 cross-sectional image; (h) MPA-25 surface image"

Fig.5

DSC curves of fibers"

Tab.2

Thermal properties and crystallinity of nylon fiber with different magnetic"

试样 熔点/℃ 热焓/(J·g-1) 结晶度/%
MPA-0 206.63 60.14 26.15
MPA-15 207.24 52.98 23.03
MPA-20 206.82 49.51 21.53
MPA-25 206.63 47.09 20.47

Fig.6

TGA curves of fibers"

Tab.3

Mechanical properties of fibers"

试样 断裂强度/
(cN·dtex-1)
强度
保持率/%
断裂
伸长率/%
断裂伸长率
保持率/%
MPA-0 3.64 100.00 77.01 100.00
MPA-15 3.16 86.81 63.82 82.87
MPA-20 2.93 80.49 61.80 80.25
MPA-25 2.50 68.68 59.01 76.62

Tab.4

Magnetic flux density of fabrics"

织物编号 磁粉质量分数/% 磁感应强度/mT 磁感应强度增长率/%
F-1 15 0.050
20 0.055 10.10
25 0.059 18.96
F-2 15 0.028
20 0.034 22.17
25 0.041 46.72
F-3 15 0.051
20 0.059 16.46
25 0.093 83.52
[1] 刘飞飞. 纺织品微磁场测试实验方法的研究[D]. 天津:天津工业大学, 2009:1-3.
LIU Feifei. Research on testing methods of magnetic flux density of textiles[D]. Tianjin: Tianjin Polytechnic University, 2009: 1-3.
[2] 张博亚, 张如全. 纺织品磁性整理的研究进展[J]. 纺织导报, 2017(3):64-66.
ZHANG Boya, ZHANG Ruquan. Research and development of magnetic finishing of textiles[J]. China Textile Leader, 2017(3):64-66.
[3] 高雪妮. 磁性纤维针织面料的研究与开发[D]. 西安: 西安工程大学, 2013:2-3.
GAO Xueni. Research and development of magnetic fiber knitted fabric[D]. Xi'an: Xi'an Polytechnic University, 2013:2-3.
[4] 于高杰. 磁保健织物表面磁性测试与评价研究[D]. 苏州:苏州大学, 2013: 3.
YU Gaojie. Evaluation and measurement of magnetic fabric performance[D]. Suzhou: Soochow University, 2013: 3.
[5] 万倩华, 潘志娟, 柳艳, 等. 含纳米粉体功能性纤维的制备方法[J]. 纺织学报, 2009,30(7):135-141.
WAN Qianhua, PAN Zhijuan, LIU Yan, et al. Fabricating methods of functional fibers containing nanoparticles[J]. Journal of Textile Research, 2009,30(7):135-141.
[6] 文永奋. 医用及保健纺织品的开发[J]. 高科技与产业化, 2005(z1):93-96.
WEN Yongfen. Development of medical and health textiles[J]. High-Technology & Industrialization, 2005(z1):93-96.
[7] 王玉新, 荆妙蕾, 闫妍, 等. 丙纶磁性纤维仿毛织物舒适性的多元回归分析及混纺比优化[J]. 毛纺科技, 2013,41(2):15-18.
WANG Yuxin, JING Miaolei, YAN Yan, et al. Multiple regression analysis on comfort property of PP magnetic fiber wool-like fabrics and blended ratio optimization[J]. Wool Textile Journal, 2013,41(2):15-18.
[8] 周建平, 何卫星, 阚建兴, 等. 锦纶磁性复合纤维及其生产方法: 201611119249[P]. 2016-12-08.
ZHOU Jianping, HE Weixing, KAN Jianxing, et al. Preparation of nylon-based magnetic composite fibers: 201611119249[P]. 2016-12-08.
[9] 马跃起, 龙家杰, 赵建平, 等. 超临界CO2流体处理对锦纶6纤维的影响[J]. 丝绸, 2010(9):4-10.
MA Yueqi, LONG Jiajie, ZHAO Jianping, et al. Effects of supercritical CO2 fluid treatment on polyamide-6 fibers[J]. Journal of Silk, 2010(9):4-10.
[10] 向军, 褚艳秋, 周广振, 等. 电纺制备多孔Ni1-xZnxFe2O4超细纤维的结构与磁性能[J]. 无机材料学报, 2012,27(4):363-368.
XIANG Jun, CHU Yanqiu, ZHOU Guangzhen, et al. Structure and magnetic properties of porous Ni1-xZnxFe2O4 ultrafine fibers prepared by electro spinning technique[J]. Journal of Inorganic Materials, 2012,27(4):363-368.
doi: 10.3724/SP.J.1077.2012.00363
[11] 田西光. 钴镍铜和钴镍锌铁氧体纳米纤维的制备及其磁性能研究[D]. 兰州:兰州理工大学, 2017:24-26.
TIAN Xiguang. Cobalt nickel copper and cobalt nickel zinc ferrite nanofibers fabricated by electrospinning: their structure and magnetic properties research[D]. Lanzhou: Lanzhou University of Technology, 2017:24-26.
[12] 郭利. 钛白粉表面改性对全消光锦纶纤维性能的影响[D]. 上海:东华大学, 2014: 48-49.
GUO Li. Effect of surface modification of titanla on the properties of full dull PA6 fibers[D]. Shanghai: Donghua University, 2014: 48-49.
[13] ZHANG H, ZHENG J Y. Immobilization of magnetic magnetite nanoparticle film on polyamide fabric[J]. Journal of Applied Polymer Science, 2012,125(5):3771-3777.
[1] DUO Yongchao, QIAN Xiaoming, ZHAO Baobao, QIAN Yao, ZOU Zhiwei. Preparation and properties of microfiber synthetic leather base [J]. Journal of Textile Research, 2020, 41(09): 81-87.
[2] ZHAO Yinghui, GU Yingchun, HU Fei, LIN Jiayou, YE Lanlin, LI Jingjing, CHEN Sheng. Progress review on research of aromatic polyamide nanofiber composites [J]. Journal of Textile Research, 2020, 41(01): 184-189.
[3] DONG Kuiyong, YANG Tingting, WANG Xueli, HE Yong, YU Jianyong. Research and development progress of bio-based polyester and polyamide fibers [J]. Journal of Textile Research, 2020, 41(01): 174-183.
[4] GUO Zengge, JIANG Zhaohui, JIA Zhao, PU Congcong, LI Xin, CHENG Bowen. Influence of pressure on rheological behavior of polyethylene terephthalate-polyamide 6 copolymer / polyamide 6 blends [J]. Journal of Textile Research, 2019, 40(12): 27-31.
[5] ZHANG Jiao, GAO Xuefeng, WANG Yuzhou, LIU Haihui, ZHANG Xingxiang. Preparation and properties of polyamide 66/amino-functionalized multi-walled carbon nanotubes fibers [J]. Journal of Textile Research, 2019, 40(11): 1-8.
[6] PAN Weinan, XIANG Hengxue, ZHAI Gongxun, NI Mingda, SHEN Jiaguang, ZHU Meifang. Influence of relative molecular weight of copolyamide 6 / 66 on crystallization and rheological properties thereof [J]. Journal of Textile Research, 2019, 40(09): 8-14.
[7] .

Synthesis and characterization of bio-based polyamide 56 oligomer modified polyester [J]. Journal of Textile Research, 2019, 40(06): 1-7.

[8] . In-situ synthesis of calcium carbonate from oleic acid and application there of in wet coating of polyamide [J]. Journal of Textile Research, 2019, 40(05): 70-77.
[9] . Nonisothermal crystallization kinetics of novel nylon-carbon chain polyamide 1211 [J]. Journal of Textile Research, 2018, 39(12): 1-6.
[10] . Analysis on components properties of alkali-soluble polyester/polyamide 6 sea island fiber [J]. Journal of Textile Research, 2018, 39(09): 15-21.
[11] . Preparation and performance of pentaerythritol phosphate/zine diethyl phosphate synergistic flame retardant polyamide 6 [J]. Journal of Textile Research, 2018, 39(09): 8-14.
[12] . Testing and characterizing of filament breakage of multifilament yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 29-35.
[13] . Preparation and characterization of sheath-core energy storage and thermo-regulated composite fibers of polyamide 6 [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(04): 1-8.
[14] . Influence of softening treatment on properties of polyester/polyamide 6 hollow segmented-pie ultrafine fiber nonwovens [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 114-119.
[15] . Basic issues and development trends on general synthetic fibers with high functionalization [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 167-174.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!